首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some closed-form equations for the coupling problem of buckling and growth of circular delamination are derived by recourse to the moving boundary variational principle. The axisymmetric buckling of a circular delamination subjected to an equal bi-axial compression is analysed by using high-order perturbation expansion. The axisymmetric buckled delamination has the following properties : under a certain residual pressure, there exist two characteristic radii, namely the critical radius Rc and growing radius Rg; for a certain interface toughness, the blister has three configuration of stationary, stable growth and unstable growth with increasing the loads. Under a higher edge thrust, the nonaxisymmetric secondary buckling will occur on the base of axisymmetric buckling and then the toughness and the driving force of the interface crack will be different along the delamination front. So the growth of circular delamination will not be self-similar. Without any assumption regarding the delamination front, the configurations of the blister with several nonaxisymmetric buckling modes n = 2, 3, 6, 8 are simulated. The nonaxisymmetric growth process for the nonaxisymmetric buckling mode n = 2 is simulated also under a sequence of loads.  相似文献   

2.
The buckling loads of eight-ply AS4/3501-6 graphite/epoxy cylindrical panels with delaminations were determined experimentally. The delaminations fabricated into the laminate with Mylar and Teflon inserts, represent the effect of low-velocity projectile impact damage. The Mylar was found to cause partial delamination while the Teflon inserts caused total delamination. Two types of insert positions were considered; eccentric or off-midsurface, and midsurface. The eccentric delaminations were placed progressively through the thickness of the laminate. STAGSC-1 finite-element computer code results for undelaminated composite panels were compared to the experimental results to obtain a percent strength degradation. The experimental testing was accomplished by the Air Force Flight Dynamics Laboratory. The test device provided boundary conditions of clamped top and bottom edges and simply supported vertical sides. Two destructive techniques, stereo X-ray and deply, were used to determine the total delaminated areas and locations. Based in part on these results, one equivalent delamination was obtained corresponding to the total area of the multiple partial delaminations. The panels with multiple delaminations were found to be approximately five-percent weaker than a single delaminated area of the same total size. Paper was presented at the 1987 SEM Spring Conference on Experimental Mechanics held in Houston, TX on June 14–19.  相似文献   

3.

This study dealt with the dynamic stability and geometrical nonlinear problems of carbon nanotube/fiber/polymer composite (CNTFPC) cylindrical panels without or with delamination around a central cutout. A multiscale analysis using the Hewitt and Malherbe model was performed to determine the carbon nanotube (CNT) weight ratios, thickness–radius ratios, thickness–length ratios, and delamination area ratios around a cutout. A delamination around a central cutout was modeled in two dimensions by introducing continuity conditions of displacements at the delamination boundaries. The proposed approach in this study has been verified by previous studies. Parametric results showed the significance of a proper CNT ratio and curvature for better structural performance on the dynamic instability and nonlinearity of delaminated CNTFPC cylindrical panels.

  相似文献   

4.
5.
This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass (I0/M¯>170 m s−1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s−1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal metrics against which model predictive capabilities can be assessed.  相似文献   

6.
We study delamination in a sandwich panel due to transient finite plane strain elastic deformations caused by local water slamming loads and use the boundary element method to analyze motion of water and the finite element method to determine deformations of the panel. The cohesive zone model is used to study delamination initiation and propagation. The fluid is assumed to be incompressible and inviscid, and undergo irrotational motion. A layer-wise third order shear and normal deformable plate/shell theory is employed to simulate deformations of the panel by considering all geometric nonlinearities (i.e., all non-linear terms in strain–displacement relations) and taking the panel material to be St. Venant–Kirchhoff (i.e., the second Piola–Kirchhoff stress tensor is a linear function of the Green–St. Venant strain tensor). The Rayleigh damping is introduced to account for structural damping that reduces oscillations in the pressure acting on the panel/water interface. Results have been computed for water entry of (i) straight and circular sandwich panels made of Hookean materials with and without consideration of delamination failure, and (ii) flat sandwich panels made of the St. Venant–Kirchhoff materials. The face sheets and the core of sandwich panels are made, respectively, of fiber reinforced composites and soft materials. It is found that for the same entry speed (i) the peak pressure for a curved panel is less than that for a straight panel, (ii) the consideration of geometric nonlinearities significantly increases the peak hydrodynamic pressure, (iii) delamination occurs in mode-II, and (iv) the delamination reduces the hydroelastic pressure acting on the panel surface and hence alters deformations of the panel.  相似文献   

7.
本文研究了具有任意位置透型脱层的复合材料梁的屈曲问题。基于弹性理论建立了复合材料脱层梁的基本方程式。对脱层梁进行了分区处理,利用B样条函数作为位移型函数的基函数,方便地描述了脱层长度、脱层位置。考虑边界条件、区间位移连续性条件和弯矩剪力的平衡条件以及纵向内力的附加条件,对基本方程式进行了求解。得出了脱层位置不同,脱层长度不同的屈曲荷载的变化规律,并与轴对称脱层时的屈曲荷载进行了比较,认为层合梁考虑脱层对屈曲的影响是非常必要的。  相似文献   

8.
风荷载在屋面光伏阵列结构体系设计中起控制作用。采用计算风工程的方法分析讨论了屋面光伏板的风荷载特性。数值算法采用分离涡模拟方法。数值计算结果与现有风洞实验数据的比较,验证了本文方法的正确性。考虑影响光伏板风荷载的因素主要有光伏板在屋面上的安装位置、安装倾角、光伏阵列之间的距离和风向等。计算结果表明,屋面处脱落的涡对安装在不同位置的光伏阵列风荷载的影响较明显。当倾角由15°增加到45°时,电池板受到的风荷载随着倾角的增加而增大。在一定阵列间距范围内,光伏板风荷载主要表现为前排对下游光伏板的遮挡影响。本文方法与结果能为屋面光伏建筑结构设计提供重要参考。  相似文献   

9.
A refined higher order shear deformation theory is used to investigate the dynamic instability associated with composite plates with delamination that are subject to dynamic compressive loads. Both transverse shear and rotary inertia effects are taken into account. The theory is capable of modeling the independent displacement field above and below the delamination. All stress free boundary conditions at free surfaces as well as delamination interfaces are satisfied by this theory. The procedure is implemented using the finite element method. Delamination is modeled through the multi-point constraint approach using the transformation matrix technique. For validation purposes, the natural frequencies and the critical buckling loads are computed and compared with three-dimensional NASTRAN results and available experimental data. The effect of delamination on the critical buckling load and the first two instability regions is investigated for various loading conditions and plate thickness. As expected, the natural frequencies and the critical buckling load of the plates with delaminations decrease with increase in delamination length. Increase in delamination length also causes instability regions to be shifted to lower parametric resonance frequencies. The effect of edge delamination on the static and dynamic stability as well as of delamination growth is investigated.  相似文献   

10.
本文针对碳纤维复合材料点阵结构,从结构设计、制备工艺、平压性能、剪切性能等方面对其进行试验表征及理论模型研究.设计四种成型碳纤维复合材料金字塔点阵结构的思想,并采用一种新的制备工艺即预浸料二次成型工艺制备试样,试验结果表明,该工艺能最大程度发挥纤维增强潜力.通过实验揭示在平压载荷下杆件屈曲、杆件断裂、杆件分层脱胶失效机理,在剪切载荷下杆件屈曲、杆件分层、杆件脱胶失效机理,基于结构力学基础原理,建立相应理论模型,经过修正之后的理论模型均能较好预报典型载荷下力学性能.本文研究发现碳纤维复合材料金字塔点阵结构具有密度低、比强度大、比刚度高等优点,且芯子中具有大量空间,可以制备轻质多功能结构.  相似文献   

11.
The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The structural performance of panels with specific core configurations under multiple impulsive pressure loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of 4%–5% are shown to have minimum face sheet deflection for the loading conditions considered here. This was consistent with the findings related to the sandwich panel response subjected to a single intense shock. Comparison of these results showed that optimized sandwich panels outperform solid plates under shock loading. An empirical method for prediction of the deflection and fracture of sandwich panels under two consecutive shocks – based on finding an effective peak over-pressure – was provided. Moreover, a limited number of simulations related to response and fracture of sandwich panels under multiple shocks with different material properties were performed to highlight the role of metal strength and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels representing a relatively wide range of strength, strain hardening and ductility values were studied. For panels clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the fracture and failure mechanisms under various shock intensities for panels subjected to up to three consecutive shocks. The results complement previous studies on the behavior and fracture of these panels under high intensity dynamic loading and further highlights the potential of these panels for development of threat-resistant structural systems.  相似文献   

12.
The deformation and failure response of composite sandwich beams and panels under low velocity impact was reviewed and discussed. Sandwich facesheet materials discussed are unidirectional and woven carbon/epoxy, and woven glass/vinylester composite laminates; sandwich core materials investigated include four types of closed cell PVC foams of various densities, and balsa wood. Sandwich beams were tested in an instrumented drop tower system under various energy levels, where load and strain histories and failure modes were recorded for the various types of beams. Peak loads predicted by spring-mass and energy balance models were in satisfactory agreement with experimental measurements. Failure patterns depend strongly on the impact energy levels and core properties. Failure modes observed include core indentation/cracking, facesheet buckling, delamination within the facesheet, and debonding between the facesheet and core. In the case of sandwich panels, it was shown that static and impact loads of the same magnitude produce very similar far-field deformations. The induced damage is localized and is lower for impact loading than for an equivalent static loading. The load history, predicted by a model based on the sinusoidal shape of the impact load pulse, was in agreement with experimental results. A finite element model was implemented to capture the full response of the panel indentation. The investigation of post impact behavior of sandwich structures shows that, although impact damage may not be readily visible, its effects on the residual mechanical properties of the structure can be quite detrimental.  相似文献   

13.
The paper presents the results of an investigation of the non-linear behavior of delaminated sandwich panels with a compressible core. The delaminated zone, at one of the face-core interfaces, consists of through-the-width crack, which is free of shear stresses but is capable of accommodating partial contact with compressive stresses only within the debonded zone. The governing non-linear equations along with the appropriate boundary conditions and the continuity conditions are derived through variational principles. The governing equations include moderate deformations type of kinematic relations, and include the high-order effects due to the transverse flexibility of the core. The governing equations along with the stress and displacements fields for the core and the appropriate continuity conditions are presented. The effects of the non-linear response and the partial contact are described through some numerical cases of three points bending typical sandwich panels with inner delaminations in the vicinity of a concentrated load, in the vicinity of a stiffened core and, finally, far from the load. Numerical results in the form of displacements, bending moments, shear stresses in the core and vertical interfacial normal stresses at the upper and lower face-core interfaces along the panel length and at the delamination crack tips are presented. Buckling curves of load versus various extreme structural parameters are included. The analyses show that a full contact type of delamination transforms into a partial contact area with buckling of the compressed face sheet, as the load is increased and it is associated with extreme large displacements and stresses.  相似文献   

14.
李跃宇 《力学季刊》2000,21(3):376-379
脱层是复合材料层板结构中主要的缺陷形式之一。当脱层层板受到压力载荷的作用会造成脱层的局部屈曲和扩展,从而使结构的强度和刚度大为降低。含脱层层板的弯曲问题包含了脱层的压缩问题,却比压缩问题更加复杂。本文对含穿透脱层层板在纯弯载荷作用下的后屈曲问题进行了基于一阶剪切层板理论的几何非线性有限元分析,运用虚裂纹闭合技术求解了纯弯载荷作用下的脱层尖端的能量释放率各型分量,并用脱层扩展判据求解了脱层起始扩展载荷。  相似文献   

15.
舱内爆炸载荷及舱室板架结构的失效模式分析   总被引:15,自引:0,他引:15  
通过对典型半穿甲导弹打靶实验中舰艇结构破坏模式的观察,结合数值模拟,分析了舱内爆炸载荷的特征以及舱内爆炸下舱室板架结构的失效模式。结果表明,舱内爆炸下,舱室板架结构承受的冲击载荷及失效模式与敞开环境爆炸下加筋板结构承受的冲击载荷及失效模式有较大区别,其动态响应难以用敞开环境爆炸下加筋板结构的动态响应描述;舱内爆炸载荷主要有壁面反射冲击波、角隅汇聚冲击波以及准静态气体压力,其中两壁面和三壁面角隅汇聚冲击波的强度分别为相同部位壁面反射冲击波强度的5倍和12倍以上;舱室板架结构主要有4种失效模式,其中模式Ⅲ、Ⅳ较常发生;舱室板架结构加强筋布置在迎爆面将使板架中部的局部破坏程度增加,但有利于削弱角隅汇聚冲击波强度,减小板架沿角隅部位的撕裂破坏。  相似文献   

16.
Stitching has been used as through-thickness reinforcement to reduce the effects of delamination. In stitching, the delamination will be held by stitches in the form of crack/interface bridging. In the present work, the reinforcement of stitching threads is assumed to provide continuous linear restoring tractions opposing the delamination opening. A generalized mathematical model is developed to study the buckling analysis of two layer delaminated beams with bridging by using Rayleigh–Ritz energy method. The delaminated beam is analyzed as four interconnected beams using the delamination as their boundary. Lagrange multipliers are used to enforce the boundary and continuity conditions between the junctions of the interconnected beams. The developed mathematical model is solved as an eigenvalue problem in which the lowest eigenvalue gives the buckling load. Effective-bridging modulus, a new nondimensionalized parameter, is introduced to study the influence of bridging on the delamination buckling. It is shown that bridging strongly influences the buckling load of the delaminated beams and a monotonic relation is observed between the buckling load and the effective-bridging modulus. Parametric studies in terms of delamination sizes and locations along spanwise and thicknesswise positions on the buckling load have been carried out. The bridging is found to be effective for shallow delaminations of moderate length, and for deep and long delaminations. Spanwise positions of delamination strongly influence the buckling loads. In addition, an analytical model for obtaining upper bounds of the buckling load is developed by using Euler–Bernoulli beam theory. Effective-slenderness ratio, a new nondimensionalized parameter is defined and it is found to be controlling the buckling mode configurations, i.e., local, global and mixed modes.  相似文献   

17.
Based on the first-order shear deformable beam theory, a refined model for composite beams containing a through-the-width delamination is presented, and the deformation at the delamination front is considered. Different from the ordinary delami- nated beam theory, each of the perfectly bonded portions of the new model is constructed as two separated beams along the interface without assuming a plane section at the de- lamination front. The governing equations of the delaminated portions and bonded ones are established, combined with continuity conditions of displacements and internal forces. Solutions of delaminated composite beams with different boundary conditions, delamina- tion locations and sizes axe shown in excellent agreement with the finite element results, showing efficiency and applicability of the present model.  相似文献   

18.
The aim of this paper is to analyze delaminated multilayered plates under classical loads using an alternative model to the existing three-dimensional finite element methods (3D-FEM). The proposed alternative model, named LS1, is a layerwise stress model proving significantly less computationally expensive while accurate and efficient. In particular this paper uses experimental data from different simple test specimens in a finite element code, which is based on LS1, in order to calculate strain energy release rates (SERR) in different modes of delamination. The focus is on two types of delaminated interfaces 0°/0° and 0°/45°. The obtained SERR results are in very good agreement with the experimental values and, in the case of mixed-mode delamination, they are as accurate as the SERR obtained by 3D-FE models. The other interesting property of the LS1 model is the very fast calculation speed as the SERR can be analytically deduced from interfacial stresses. This relation which only depends on the stacking sequence and the position of delamination is presented.  相似文献   

19.
The post-buckling behaviour of anisotropic stiffened panels with initial imperfections is investigated. Since buckling of the skin between the stiffeners often occurs first, a non-linear analysis is developed for symmetric panels under biaxial compression in order to obtain the out-of-plane panel deflection in the post-buckling range. The non-linear differential equations are expressed in terms of the out-of-plane displacement and the Airy function. They are solved with the Galerkin method for various boundary conditions by imposing an edge displacement control. The theoretical and experimental results obtained by the present analysis show that the transverse load can greatly influence the buckling loads and halfwave number. Since no experimental results have been found in the literature, several tests have been carried out on graphite/epoxy blade stiffened panels 900 mm long and 620 mm wide applying simultaneously biaxial compression loads with several combined ratios. An eccentricity results between longitudinal and transverse load, because the longitudinal compression is applied along the centroidal axes of the stiffened section while the transverse compression is applied to the skin panel. The correlation between the experimental and analytical results has been quite good; the experimental results demonstrate the influence of eccentricity of the transverse load on panel deflection in the pre- and post-buckling range.  相似文献   

20.
The exact analytical solution of buckling in delaminated columns is presented. In order to investigate analytically the influence of axial and shear strains on buckling loads the geometrically exact beam theory is employed with no simplification of the governing equations. The critical forces are then obtained by the linearized stability theory. In the paper, we limit the studies to linear elastic columns with a single delamination, but with arbitrary longitudinal and vertical asymmetry of delamination and arbitrary boundary conditions. The studies of quantitative and qualitative influence of transverse shear are shown in detail and extensive results for buckling loads with respect to delamination length, thickness and longitudinal position are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号