首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
靖边气田储层整体具有孔喉半径较小,排驱压力较高,压裂液易滞留储层造成伤害。为了缓解环保压力,并减少处理费用和液体成本,开展了可回收压裂液体系研发。新型可回收压裂液体系选用碳链高分子、磺酸基、非离子表活性单体烷基酚、聚氧乙烯醚、丙烯酸酯等作为稠化剂主剂,在分子中引入可增加分子链刚性的环状结构;并用0.35%阴离子表面活性剂作为助剂。通过静态沉砂实验、压裂液屈服应力确定稠化剂使用浓度,最终确定了靖边气田可回收压裂液体系的配方:0.45%稠化剂+0.5%助排剂+0.35%助剂。室内评价结果表明,该体系在120℃条件下具有良好的抗剪切性能;低黏高弹特点明显(G'/G'比值21.9);减阻率57.8%;破胶液具有较小的毛细管力;多次重复配液使用后岩心伤害率在15%以内。2015年,在靖边气田现场应用57口井,再利用率达94.26%。该新型压裂液体系对于同类型其他气田开发时降低成本、减少环境影响具有借鉴意义。  相似文献   

2.
为了合理计算现场压裂管柱沿程摩阻,利用雷诺数相似的方法,得出现场滑溜水管柱摩阻系数与室内管柱摩阻系数关系式及现场与室内的摩阻、排量和管长关系式。通过测定室内的滑溜水管流摩阻,计算现场施工的压裂管柱摩阻值。通过关系式结合现场试验验证,其计算管流摩阻值与实测管流摩阻值进行对比,计算管流摩阻值相对误差小于7%,该方法可以为页岩气大型滑溜水压裂摩阻预测提供计算模型。  相似文献   

3.
纳米材料已被证明可以提高非常规油气采收率,但其在储层孔隙中的吸附与滞留机理尚未明确。本文以大庆油田上白垩统青山口组致密砂岩为研究对象,采用低温液氮吸附、润湿角测定、扫描电镜、核磁共振及离心实验方法,研究了纳米-滑溜水压裂液在孔隙中的吸附与滞留,以及其对微观孔隙结构参数的影响。结果表明,纳米滑溜水压裂液处理后,扫描电镜观察到纳米颗粒在孔隙中滞留,岩石润湿角降低30.28%~58.17%;孔隙结构由平板孔向墨水瓶孔过渡,比表面积及吸附量显著增加;微孔占比减小20%~25%,过渡孔占比增大21%~26%,总孔体积增大;分形维数变小更接近2,孔隙结构变简单。纳米颗粒在储层孔隙中的吸附与滞留,导致微观孔隙结构发生变化。实验结果与认识对纳米-滑溜水压裂液在致密砂岩储层中的应用具有重要意义。  相似文献   

4.
采用光电微流量计实现了微细流量的精确测量,建立了一套致密油藏岩心渗流曲线测试方法,分析了喉道半径、微裂缝和流体性质对致密油渗流规律及启动压力梯度的影响。研究结果表明:岩心由不同级别的喉道组成是致密油产生非线性渗流的本质,真实启动压力梯度与最大喉道半径具有较好的幂律关系,拟启动压力梯度和平均喉道半径具有较好的幂律关系;与基质型岩心相比,含微裂缝岩心的真实启动压力梯度和拟启动压力梯度都有所降低,真实启动压力梯度降低的幅度大于拟启动压力梯度;与模拟地层水相比,利用模拟油得到的真实启动压力梯度和拟启动压力梯度都有所增大,渗透率越低,不同流体介质得到的真实启动压力梯度和拟启动压力梯度差异越显著。  相似文献   

5.
华庆油田属于典型的超低渗油藏,储层致密,层内隔夹层发育,纵向非均质性强,部分水平井钻遇致密隔夹层,物性差;随着油田开发进一步扩大,地层物性逐步变差;声波时差205us/m、渗透率0.1md以下地层,用低浓度胍胶很难压开。本文通过分析新型生物胶清洁压裂液在致密储层水平井的试验效果,认为该压裂液较低浓度胍胶具有低摩阻、可回收、施工方便等优点,符合长庆油田高效、节能、环保的发展理念,益于华庆油田致密储层水平井压裂改造。  相似文献   

6.
致密油藏特征及一种新型开发技术   总被引:1,自引:0,他引:1  
 致密油包含源储接触和源储紧邻两种典型源储配置关系,且致密油不包含页岩油,这明晰了致密油的定义和分类。从构造、岩石物性和流体性质3 个方面总结了致密油的储层特征。中国致密油资源潜力巨大,是目前中国非常规油气开发领域最为现实的选择。HiWAY 流道水力压裂技术在开发致密油方面极具潜力,已在全球10 个国家的40 多个非常规油气田成功作业,平均增产20%以上,并大幅度节约了用水量和支撑剂使用量,其技术的关键在于通过交替式间歇注入支撑剂和高强度凝胶压裂液在裂缝中产生流道,并利用一种新型的纤维添加物来使流道保持稳定分布。  相似文献   

7.
探讨陆相致密油藏差异化含油特征与控制因素可支撑致密油藏储层评价、深化致密油藏储层认识。通过致密油藏宏观分布、岩芯观察、油藏条件、单井产能4个方面对比分析,揭示海相、陆相致密油藏均普遍存在差异化含油现象,陆相致密油藏差异化含油具有“分布散、范围宽、差异大”的特点;通过岩芯描述、薄片鉴定、测井解释、开发区解剖等方式,阐明了准噶尔盆地吉木萨尔凹陷芦草沟组致密油藏不同尺度条件下均表现出强烈的差异化含油特性,在井位优选、井轨迹和压裂改造设计中正越来越受到重视;进行了致密油藏差异化含油控制因素探讨,提出沉积相、成岩相、断裂体系及源储配置等因素决定了致密油藏含油性的宏观差异化分布,储层层理、物性、孔隙结构、微裂缝等因素控制了致密油藏储层局部含油性差异化分布。  相似文献   

8.
高温压裂液技术对低流度型致密油起到降稠、有效避免储层冷伤害的作用,为找到不同压裂施工参数对低流度致密油开发效果的影响,建立井筒温度场模型和模拟压裂液的注入反排过程,得到精确的井筒温度场,并计算出高温压裂液从井口到井底的温度变化、各压裂施工参数对于生产过程的影响。研究后认为,低于54℃的高温压裂液从地面到达井底会升温,反之会降温;随压裂液温度的升高,初期能有效增产,随时间增长,增产效果下降;原油黏度对压裂液温度越敏感,高温压裂液的增产效果越明显,并随压裂液的温度增高,增产效果越好;注入高温压裂液后,关井时间越长,获得的累计产油量越小,但日产油量在关井半年时间能获得最大值。  相似文献   

9.
常规滑溜水压裂液已经成功运用于页岩等非常规油气储层压裂中,但其携砂性能差、渗吸采收率低的问题仍然未得到有效解决。针对这一问题,本文合成一种新型纳米变粘滑溜水,该体系不仅具有常规滑溜水优异的减阻特性,还兼具了较强的变粘携砂性能;另外,该体系含有优选的纳米乳液,可将混合润湿或油润湿的页岩油储层改性为水润湿,具有强渗吸置换作用。通过一系列室内实验评价可以发现:碳纳米渗吸(carbon nano imbibtion,CNI )体系纳米变粘滑溜水为乳液状,可实时在线配制,通过调整其浓度,粘度发生显著变化,达到低浓度时高减阻、高浓度时强携砂的效果,残渣含量及对储层伤害低,实现了一剂多效;同时它还具有常规滑溜水与瓜胶携砂液所没有的改性驱油的效果,从而提高原油采收率。纳米变粘滑溜水同时具备高减阻、高携砂、低伤害和强置换的性能,可作为未来页岩油压裂的主体压裂液。  相似文献   

10.
长庆油田致密油资源丰富,是上产稳产5 000×104t 战略目标的重要资源基础。由于开发区主要分布在梁峁交 错的黄土塬区,受地貌条件与开发要求的限制,需要开展带有较大偏移距的三维水平井钻井。三维水平井轨迹控制困 难、泥岩坍塌、摩阻扭矩突增等瓶颈难题严重制约了水平井的规模推广。为解决大偏移距三维水平井施工难题,形成 高效开发致密油藏的主体钻井技术,开展了三维井井身剖面优化、轨迹控制攻关、钻井液体系研究,形成了致密油藏 三维水平井钻井技术。并在YAP 5H 井进行了先导性试验,钻井过程中未出现泥岩坍塌、摩阻扭矩正常、井眼轨迹平 滑,完钻水平段长1 535 m,试油产量119.7 m3/d。该井的顺利实施,首次实现了致密油水平井由二维向大偏移距三维 钻井的技术创新与突破,为长庆油田水平井开发方式的转变和实现致密油经济有效开发打下基础。  相似文献   

11.
以阴、阳离子聚电解质为原料,应用溶液共混法制备了RPM(Relative Permeability Modifiers)控水压裂液,评价了RPM溶液吸附、抗剪切及耐冲刷性能,并以油水相对渗透率为指标考察了RPM压裂液控水效果并分析其控水机理。考虑RPM吸附、滤失等因素,建立了低渗油藏RPM压裂液性能及注入参数优化模型。以长庆油田一口油井为例,综合考虑作业成本、产油量与含水率等因素,应用正交设计与数值模拟方法优化RPM控水压裂液的油水残余阻力系数比、滤失深度比及注入体积并进行了敏感性分析。结果表明:RPM控水压裂液具有良好的抗剪切耐冲刷性能,通过物理化学吸附改变了岩石孔隙或微裂缝中油水渗流特性,尤其在高含水饱和度阶段可降低水相相对渗透率80%以上;RPM控水压裂液的油水残余阻力系数比、滤失深度比以及注入体积分别在2~6、0.3~0.6与20~30 m3范围内控水稳油效果明显;选择油水残余阻力系数比为5.0、滤失深度比为0.6的RPM控水压裂液在长庆油田高含水储层先导试验4井次,单井平均增油4.64t/d,含水率平均下降58.51%。  相似文献   

12.
致密油储层自然渗透率低,孔隙结构细小、流体流动难度大,一般采用压裂井衰竭开发方式。压裂后储层将形成裂缝、基质两种渗流介质。在综合考虑介质类型及不同介质渗流能力基础上,结合物质平衡方程及产能方程,建立了压裂致密油储层的产量递减模型。实例分析表明,产量递减模型与生产动态数据吻合度较高;而常规Arps递减由于没有考虑基质与裂缝的差异性,递减曲线与生产动态数据吻合度相对较低。因此,该方法可以用于压裂致密油藏产能递减规律的分析。  相似文献   

13.
无残渣纤维素压裂液体系在酸性条件下实现交联,具有基液配制简单、增黏速度快、无鱼眼、携砂性能好、破胶彻底、无残渣、低伤害及自身防膨等特点,跟羟丙基瓜胶压裂液相比,更适用于易受外来流体伤害的低渗特低渗储层的压裂改造。现成功应用于苏里格东区致密气藏。试验结果表明,该压裂液基液能在2 min达到其最高黏度的97.5%,破胶液表面张力为24.68 m N·m-1,压裂液残渣含量为0,岩心损害率为12.3%,极大降低了对储层和裂缝导流能力的伤害。在苏里格气田进行了现场应用5口井11层(段),压裂效果显著,压后平均日产气量是邻井的2~5倍。  相似文献   

14.
针对常规胍胶压裂液对致密砂岩气藏伤害大的难题,通过分子结构设计和正交实验,研制了一种纳米封堵型低伤害压裂液,在致密气藏压裂施工中能封堵部分压裂液于储层基质外,施工后液体能快速返排,从而有效降低稠化剂分子的滞留吸附与液相伤害。该压裂液在35~140℃、170 s-1条件下剪切120 min,终黏度大于80 mPa.s:能彻底破胶,残渣含量低,破胶液表面张力为25.91 mN/m,对致密砂岩岩芯伤害率低于15%,封堵性能及其他综合性能满足现场施工要求。该压裂液在ZJ125井现场应用,效果良好,施工后液体返排快,返排率高达75.94%,比邻井提高47%,天然气产量1.647 5×104 m3/d,是邻井JS316HF井产量的两倍,显示了其在致密砂岩气藏中良好的低滞留特性。  相似文献   

15.
研发了一种新型表面活性剂,与助表面活性剂组成复合表面活性剂体系(VES-M)。优选了疏水缔合高分子聚合物(HMPAM)和纳米材料颗粒ZnO,形成纳米复合清洁压裂液体系,具有表面活性剂用量低、添加剂种类少的特点。室内试验表明,与常规黏弹性表面活性剂清洁压裂液相比,该体系具有更好的耐温性能及耐剪切性能,较好的降滤失性、黏弹性及携砂性;且破胶彻底、速度快,破胶后无残渣,岩心伤害率仅为9.3%。2014年在苏里格气田东二区进行现场应用,试气无阻流量均值约为其相同地质条件邻井的2.0倍,为致密气藏低伤害高效改造提供了一条有效途径。  相似文献   

16.
裂缝性储层压裂液滤失对裂缝的几何尺寸、支撑剂的分布都有较大的影响。现有裂缝性储层压裂液滤失模型都对天然裂缝进行了简化处理,认为天然裂缝对基质均匀切割,这与实际不符,不能准确反映裂缝分布的非均质性对压裂液滤失的影响。基于储层裂缝统计资料,应用概率统计、随机理论、Monte–Carlo 等方法,建立储层二维离散裂缝网络模型,并借助等效渗透率张量原理将裂缝性介质转化为均质各向异性连续介质,建立了基于渗透率张量的裂缝性储层压裂液滤失数学模型。计算结果表明,天然裂缝分布及其与水力裂缝的位置关系的不同使得沿裂缝长度方向,滤失速度变化较大,若天然裂缝与水力裂缝连通,则压裂液滤失主要发生在连通处,文中模拟了天然裂缝和人工裂缝存在三处连通的情况,这三处的滤失量占裂缝总滤失量的45% 以上,建议对天然裂缝进行封堵。  相似文献   

17.
中国致密油藏资源潜力大、分布广,现阶段已成为中国长庆、大庆、新疆和吉林等油田稳产、上产的重要保障,也是全球油气开发的热点和难点。致密储层岩石致密,孔隙度和渗透率极低,其主流喉道为亚微米,微尺度流动效应的影响显著,传统的油气渗流理论已无法准确描述此类油藏的流动规律,且开发过程中表现出原油流动困难、驱替难度大、动用程度低等开发难点,通常采用水平井和大规模体积压裂的井工厂模式实现致密油藏的高效开发。针对致密油藏渗流规律及数学模型,阐述了致密油藏渗流理论的最新研究进展,包括微纳米孔喉流动机理及数学模型、致密油藏应力敏感及数学模型、致密油藏非线性运动方程、孔隙网络模型、非线性渗流规律和致密基质裂缝耦合模型及流动规律,并针对各个前沿关键科学问题总结了其发展趋势,对致密油藏的科学高效开发具有重要的理论意义。  相似文献   

18.
为了解决致密油藏分段压裂水平井由于裂缝模型建立难度大导致的产量评价困难的问题,通过引入嵌入式离散裂缝模型(Embedded Discrete Fracture Model,EDFM),采用矩形网格,建立了考虑重力和应力敏感效应的三维致密油藏分段压裂水平井模型。首先,用Saphir对该模型的准确性进行了检验;然后,利用该模型进行了三维致密油藏、天然裂缝性致密油藏以及裂缝分布形态影响的数值模拟研究。结果表明,嵌入式离散裂缝模型能较好反映流体在天然裂缝和压裂缝网内的流动特征;压裂施工位置应选择天然裂缝发育的区域;分段压裂水平井的裂缝分布形态对产能影响显著,缝网与基质接触面积越大,油井产能越大,因此,最优化的裂缝分布可作为体积压裂施工目标。  相似文献   

19.
全面梳理了近十年来国内外有关致密油藏提高采收率方法的研究进展,提升总结了理论层面认识,从作用机理方面客观分析了各类方法的可行性,指出了目前室内研究和现场应用中存在的技术难点和问题,并展望了未来致密油藏提高采收率的研究重点和发展方向.历经多年的探索,已初步形成了注气、化学方法、智能水、溶剂法和纳米流体等提高致密油藏采收率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号