首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[TpPh,MeNi(Cl)PzPh,MeH] (1) has been synthesized by the reaction of hydrotris(3-phenyl-5-methyl-pyrazol-1-yl) borate [TpPh,Me], NiCl2 · 6H2O and 3-phenyl-5-methyl-pyrazole [PzPh,MeH]. The reaction of 1 with variously substituted sodium pX–benzoates resulted in the formation of complexes of the type [TpPh,MeNi(p–X–OBz)PzPh,MeH] (X = H for 2, F for 3, Cl for 4, NO2 for 5, Me for 6, OMe for 7, OH for 8, CHO for 9 and CN for 10). Single crystal X-ray studies suggest that all these complexes have a five-coordinate metal center and the benzoate groups are monodentate in a square pyramidal geometry. The X-ray studies also reveal that the uncoordinated oxygen atom of the benzoate forms intramolecular hydrogen-bonds with the NH group of the coordinated pyrazole. The substituents present on the benzoate ring are involved in different types of intermolecular interactions and the complexes exhibit different crystal packing. Complexes 210 were tested for superoxide dismutase activity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The reaction of diazo compounds with alkenes catalysed by complex [RuCl(cod)(Cp)] (cod=1,5‐cyclooctadiene, Cp=cyclopentadienyl) has been studied. The catalytic cycle involves in the first step the decomposition of the diazo derivative to afford the reactive [RuCl(Cp){?C(R1)R2}] intermediate and a mechanism is proposed for this step based on a kinetic study of the simple coupling reaction of ethyl diazoacetate. The evolution of the Ru–carbene intermediate in the presence of alkenes depends on the nature of the substituents at both the diazo N2?C(R1)R2 (R1, R2=Ph, H; Ph, CO2Me; Ph, Ph; C(R1)R2=fluorene) and the olefin substrates R3(H)C?C(H)R4 (R3, R4=CO2Et, CO2Et; Ph, Ph; Ph, Me; Ph, H; Me, Br; Me, CN; Ph, CN; H, CN; CN, CN). A remarkable reactivity of the complex was recorded, especially towards unstable aryldiazo compounds and electron‐poor olefins. The results obtained indicate that either cyclopropanation or metathesis products can be formed: the first products are favoured by the presence of a cyano substituent at the double bond and the second ones by a phenyl.  相似文献   

3.
The signals in the13C NMR spectra of 2,3,4,5-tetraphenyl-1-germacyclopenta-2,4-dienes (R1=R2=H, Me,cyclo-C3H5, SiMe3, SnMe3, R1=Me, R2=H, Cl) were completely assigned using 2D NMR spectroscopy. The pattern of the variation of the chemical shifts in the13C NMR spectra indicates that the effects of substituents R1 and R2 on the heterocycle and on the phenyl groups are of inductive rather than mesomeric origin and include the direct through-space polarization of bonds (field effect). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1962–1965, November, 1997.  相似文献   

4.
Electrochemical reduction of 1-X-1-R1-5-methyl-2-phenyl-7-R2-1,2-dihydro-1,2,4,3-tri-azaphospholo[4,5-a]quinolines1–5 (1: X is the lone electron pair (LEP), R1=Et2N, R2=Me;2: X=LEP, R1=Ph, R2=H;3: X=S, R1=Et2N, R2=H;4: X=LEP, R1=Et2N, R2=H;5: X=LEP, R1=MeO, R2=H) in DMF with 0.1M Bu4NI as supporting electrolyte is reversible and results in metastable radical anions. Radical anions of compounds1–3 efficiently reduce 1,2-dichloro-2-methoxycarbonyl-2-methylcyclopropane both in the presence and in absence of Ni11 ions. Effective reduction rate constants have been evaluated. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 1999.  相似文献   

5.
Synthesis of 4-alkoxy-1,1-dichloro-3-alken-2-ones [CHCl2C(O)C(R2)C(R1)-OR, where R, R1, R2 = Et, H, H; Me, Me, H; Et, H, Me; Me, –(CH2)2–; Me, –(CH2)3–; Et, Et, H; Et, Bu, H; Et, i-Pr, H; Et, i-Bu, H; Me, Ph, H; Me, thien-2-yl, H] from acylation of enol ethers and acetals with dichloroacetyl chloride, in ionic liquid ([BMIM][BF4] or [BMIM][PF6]) is reported. The synthesis of alkenones [R3–C(O)C(R2)C(R1)-OR], where R/R1/R2/R3 = Et/H/H/Ph, t-Bu/H/H/Ph, Me/-(CH2)4/Ph, Me/-(CH2)4/Me] from the reaction of enol ethers with benzoyl chloride or acetyl chloride, in ionic liquid [BMIM][BF4], is also reported. Last products are described for the first time.  相似文献   

6.
Molybdenum dithiopropiolato complexes, [(η5-C5R4R)Mo(CO)22-S2CCCPh)] (R=H, R=Me 1a, R=R=H 1b; R=R=Me 1c) react with trimethylamine-N-oxide (TMNO · 2H2O) under mild thermolysis to form 5-phenyl-1,2-dithiole-3-thione (2). The reaction proceeds through the formation of the oxo-complexes, [(η5-C5R4R)Mo(O)(η3-S2CCCPh)] (R=H, R=Me 3a, R=R=H 3b; R=R=Me 3c). Direct reaction of 3a-c with TMNO · 2H2O under thermolysis also results in formation of 2.  相似文献   

7.
Variations in the ligand structure of homogeneous late transition metal catalysts through judicious choice and location of substituent is the foremost strategy in improving their catalytic performance for ethylene polymerization. In this contribution, symmetrical and unsymmetrical bis(imino)pyridylcobaltous chloride complexes adorned with nitro and benzhydryl groups {2‐[1‐(2,6‐dibenzhydryl‐4‐nitrophenylimino)ethyl]‐6‐[1‐(alkylphenylimino)ethyl]pyridylcobaltous chloride (alkyl: R1 = Me and R2 = H, Co1 ; R1 = Et and R2 = H, Co2 ; R1 = iPr and R2 = H, Co3 ; R1 and R2 = Me, Co4 ; R1 = Et and R2 = Me, Co5 ; R1 = benzhydryl and R2 = NO2, Co6 )} have been prepared and applied as catalysts for ethylene polymerization. The molecular structure of Co1 and Co2 revealed the unequal steric protection of the cobalt center induced by bis(imino)pyridine chelate. In the presence of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) activators at different ethylene feeding rates (1 and 10 atm), catalysts Co1 – Co5 displayed high activities at 10 atm ethylene and produced strictly linear polyethylene (PE) with high molecular weight, Co2 /MMAO being the most highly active catalytic system showing the highest activity of 9.41 × 106 g of PE (mol of Co)?1 h?1 which is three times higher than that of prototypal cobalt catalyst ( Co0 ) under identical conditions. Moreover, high melt temperature and unimodal molecular weight distribution are the characteristics of the resulting polyethylene.  相似文献   

8.
The cationic complexes, [TpRNi(bpym)]+ {TpR = tris(3,5-diphenylpyrazolyl)borate, R = Ph2 1; tris(3-phenyl-5-methylpyrazolyl)borate, R = Ph,Me 2} were synthesized by reacting [TpRNiBr] (R = Ph2; Ph,Me) with bipyrimidine followed by subsequent addition of KPF6 in CH2Cl2. The green solids have been characterized by IR, UV–Vis and 1H NMR spectroscopy. Crystallographic studies of [TpPh,MeNi(bpym)]PF6 reveal a five-coordinate square pyramidal nickel centre with a κ3-coordinated TpPh,Me ligand and a chelating bipyrimidine ligand. Cyclic voltammetric studies show irreversible reduction with the degree of reversibility dependent on the type of TpR ligand.  相似文献   

9.
The syntheses are reported of the novel heteroleptic organostannylenes [2,6-(ROCH2)2C6H3]SnCl (1, R = Me; 2, R = t-Bu) and of their tungstenpentacarbonyl complexes [2,6-(ROCH2)2C6H3](X)SnW(CO)5 (3, X = Cl, R = Me; 4, X = Cl, R = t-Bu; 5, X = H, R = Me). The compounds were characterized by means of elemental analyses, 1H, 13C, 119Sn NMR spectroscopies, electrospray mass spectrometry and in case of 3 and 4 also by single crystal X-ray diffraction analysis. For the two latter compounds the substituents bound at the ether oxygen atom control the strength of intramolecular O  Sn coordination. Thus, the O–Sn distances amount to 2.391(5)/2.389(5) (3) and 2.464(3)/2.513(3) Å (4).  相似文献   

10.
The1H NMR spectra ofO-derivatives of 1-hydroxy-2,2-bis(trifluoromethyl)aziridine containing such substituents as EtO2CCH2, (R/S)-RO2CCH(Me) (R=Me, Pri, or But), (R/S)-H2NC(O)CH(Me), and (R)-H2NC(O)CH(Me) were analyzed. Both of the diastereomerically pure amides of the latter type were isolated. The validity of the1H NMR criteria, which were suggested for the determination of absolute configurations of diastereomers ofN-alkoxyaziridines, was confirmed by X-ray diffraction study of the (R,R)-amide.  相似文献   

11.
Two series of di and trinuclear chlorodiorganotin(IV) complexes derived from bis- and tris-dithiocarbamate ligands have been prepared and structurally characterized. The dinuclear complexes 1-2 of the composition {(R2SnCl)2(bis-dtc)} (1, R = Me; 2, R = nBu) have been obtained from R2SnCl2 (R = Me, nBu) and the triethylammonium salt of N,N′-dibenzyl-1,2-ethylene-bis(dithiocarbamate). The trinuclear complexes 3-9 with the general formula {(R2SnCl)3(tris-dtc)} 3, R = Me, tris-dtc = tris-dtc-Me; 4, R = Me, tris-dtc = tris-dtc-iPr; 5, R = Me, tris-dtc = tris-dtc-Bn; 6, R = nBu, tris-dtc = tris-dtc-Me; 7, R = nBu, tris-dtc = tris-dtc- iPr; 8, R = nBu, tris-dtc = tris-dtc-Bn; 9, R = tBu, tris-dtc = tris-dtc-Me) were prepared from R2SnCl2 (R = Me, nBu, tBu) and the potassium dithiocarbamate salts of (tris[2-(methylamino)ethyl]amine) (tris-dtc-Me), (tris[2-(isopropylamino)ethyl]amine) (=tris-dtc-iPr) and (tris[2-(benzylamino)ethyl]amine) (=tris-dtc-Bn). Compounds 1-9 have been analyzed as far as possible by elemental analysis, FAB+ mass spectrometry, IR and NMR (1H, 13C, 119Sn) spectroscopy, and single-crystal X-ray diffraction analysis. The solid state and solution studies showed that the dtc ligands are coordinated to the tin atoms in the anisobidentate manner. In all cases the metal centers are five-coordinate. The coordination geometry is intermediate between square-pyramidal and trigonal-bipyramidal coordination polyhedra with τ-values in the range of 0.32-0.53. For the members of each series characterized in the solid state by X-ray diffraction analysis, different molecular conformations were found. The crystal structures show the presence of C-H?Cl, C-H?S, C-H?π, S?Cl, S?S, Cl?Sn and S?Sn contacts.  相似文献   

12.
A series of six carbonylrhodium(I) complexes of three new and three previously reported di(2-3R-pyrazolyl)-p-Z/X-aryl)amido pincer ligands, (RZX)Rh(CO), (R is the substituent at the 3-pyrazolyl position proximal to the metal; Z and X are the aryl substituents para- to the arylamido nitrogen) were prepared. The metal complexes were studied to assess how their properties and reactivities can be tuned by varying the groups along the ligand periphery and how they compared to other known carbonylrhodium(I) pincer derivatives. This study was facilitated by the discovery of a new CuI-catalyzed coupling reaction between 2-(pyrazolyl)-4-X-anilines (X = Me or CF3) and 2-bromoaryl-1H-pyrazoles that allow the fabrication of pincer ligands with two different aryl arms. The NNN-pincer scaffolds provide an electron-rich environment for the carbonylrhodium(I) fragment as indicated by carbonyl stretching frequencies that occur in the range of 1948-1968 cm−1. As such, the oxidative addition (OA) reactions with iodomethane proceed instantaneously to form trans-(NNN-pincer)Rh(Me)(CO)(I) in room temperature acetone solution. The OA reactions with iodoethane proceeded at a convenient rate in acetone near 45 °C which allowed detailed kinetic studies. The relative order of reactivity was found to be (CF3CF3)Rh(CO) < (iPrMeMe)Rh(CO) < (MeMeMe)Rh(CO) ∼ (CF3Me)Rh(CO) < (MeH)Rh(CO) < (MeMe)Rh(CO) with the second order rate constant of the most reactive in the series, k2 = 8 × 10−3 M−1 s−1, being about three orders of magnitude greater than those reported for [Rh(CO)2I2] or CpRh(CO)(PPh3). After oxidative addition, the resultant rhodium(III) complexes were found to be unstable. Although a few trans-(RMeMe)Rh(E = Me, Et, or I)(CO)(I) could be isolated in pure form, all were found to slowly decompose in solution to give different products depending on the 3R-pyrazolyl substituents. Those with unsubstituted pyrazolyls (R = H) decompose with CO dissociation to give insoluble dimeric [(RMeMe)Rh(E)(μ-I)]2 while those with 3-alkylpyrazolyls (R = Me, iPr) decompose to give soluble, but unidentified products.  相似文献   

13.
The difurylphosphido-bridged dinuclear complex [Ru2(CO)6(μ-PFu2)(μ-η12-Fu)] (Fu = 2-furyl) 1 readily reacts with two equivalents of each of the terminal alkynes HC≡CR (R = Fc, p-C6H4Fc, p-C6H4NO2, Fc = Fe(η5-C5H5)(η5-C5H4)) by an interesting head-to-tail ynyl coupling with a furan group to form a series of phosphido-bridged diruthenium compounds containing a novel furyl-substituted C4 hydrocarbyl chain of stoichiometry [Ru2(CO)4(μ-PFu2){μ-η1123-RCC(H)C(R)C(H)Fu}] (R = Fc 2, p-C6H4Fc 3, p-C6H4NO2 4) in moderate to good yields. Reaction of 1 with an equimolar amount of HC≡CFc and HC≡C(p-C6H4NO2) afforded a pair of isomers of [Ru2(CO)4(μ-PFu2){μ-η1123-R1CC(H)C(R2)C(H)Fu}] (R1 = Fc, R2 = p-C6H4NO2 5a; R1 = p-C6H4NO2, R2 = Fc 5b) together with a small mixture of 4. X-ray crystal structures of 2, 3, 5a and 5b are reported. All of these new alkyne-derived dinuclear complexes are electron precise with 34 cluster valence electrons in which the μ-η12-furyl ligand acts as a three-electron donor and the μ-phosphido Ru2 framework is retained in the products upon alkyne coupling reactions. The resulting organic fragment of each complex is coordinated to the Ru atoms via a π, a π-allyl and two σ bonds, and donates seven electrons to the metal core. Dedicated to the memory of Professor F. Albert Cotton.  相似文献   

14.

Abstract  

Reactions of the thienyl side chain functionalized cyclopentadienyls (C4H3S)C(R1R2)C5H5[R1, R2 = CH3 (1); R1, R2 = (CH2)5 (2); R1, R2 = C2H5 (3)] with Ru3(CO)12 in refluxing xylene gave the corresponding cyclopentadienyl diruthenium carbonyl complexes [(η 5-C4H3S)CR1R2(C5H4)Ru(CO)2]2 (R1, R2 = CH3 (4); R1, R2 = (CH2)5 (5); R1, R2 = C2H5 (6)), which were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structures of 4, 5 and 6 were determined by single crystal X-ray diffraction.  相似文献   

15.
Two series of 5-trichloromethylisoxazoles were synthesized from the cyclocondensation of 1,1,1-trichloro-4-methoxy-3-alken-2-ones [Cl3CC(O)C(R2) = C(R1)OMe, where R1 = H, Me, Et, Pr, iso-Pr, cyclo-Pr, Bu, terc-Bu, CH2Br, CHBr2, CH(Me)SMe, (CH2)2Ph, and Ph, and R2 = H; R1 = H and R2 = Me and Et; R1 and R2 = -(CH2)4- and -(CH2)5-; and R1 = Et and Ph and R2 = Me] with hydroxylamine hydrochloride through a rapid one-pot reaction in water. The 5-trichloromethyl-4,5-dihydroisoxazoles were aromatized by reaction with concentrated sulfuric acid to obtain the respective 5-trichloromethylisoxazoles. Their structures were confirmed by elemental analysis, 1H/13C nuclear magnetic resonance, and electron impact mass spectroscopy. Crystal structure analysis for 5-triclhoromethyl-5-hydroxy-3-propyl-4,5-dihydroisoxazole (2d) and 5-trichloromethyl-5-hydroxy-3,4-hexamethylene-4,5-dihydroisoxazole (2o) is presented. The antimicrobial activities of the 5-trichloromethyl-4,5-dihydroisoxazole derivatives were examined using the standard twofold dilution method against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and yeasts (Candida spp. and Cryptococcus neoformans). All of the tested 5-trichloromethyldihydroisoxazoles exhibited antibacterial and antifungal activities at the tested concentrations.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   

16.
Terminal alkynes (HCCR) (R=COOMe, CH2OH) insert into the metal-carbyne bond of the diiron complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R=Xyl, 1a; CH2Ph, 1b; Me, 1c; Xyl=2,6-Me2C6H3), affording the corresponding μ-vinyliminium complexes [Fe2{μ-σ:η3-C(R)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, R=COOMe, 2; R=CH2Ph, R=COOMe, 3; R=Me, R=COOMe, 4; R=Xyl, R=CH2OH, 5; R=Me, R=CH2OH, 6). The insertion is regiospecific and C-C bond formation selectively occurs between the carbyne carbon and the CH moiety of the alkyne. Disubstituted alkynes (RCCR) also insert into the metal-carbyne bond leading to the formation of [Fe2{μ-σ:η3-C(R)C(R)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Me, R=Xyl, 8; R=Et, R=Xyl, 9; R=COOMe, R=Xyl, 10; R=COOMe, R=CH2Ph, 11; R=COOMe, R=Me, 12). Complexes 2, 3, 5, 8, 9 and 11, in which the iminium nitrogen is unsymmetrically substituted, give rise to E and/or Z isomers. When iminium substituents are Me and Xyl, the NMR and structural investigations (X-ray structure analysis of 2 and 8) indicate that complexes obtained from terminal alkynes preferentially adopt the E configuration, whereas those derived from internal alkynes are exclusively Z. In complexes 8 and 9, trans and cis isomers have been observed, by NMR spectroscopy, and the structures of trans-8 and cis-8 have been determined by X-ray diffraction studies. Trans to cis isomerization occurs upon heating in THF at reflux temperature. In contrast to the case of HCCR, the insertion of 2-hexyne is not regiospecific: both [Fe2{μ-σ:η3-C(CH2CH2CH3)C(Me)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 13; R=Me, 15) and [Fe2{μ-σ:η3-C(Me)C(CH2CH2CH3)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R=Xyl, 14, R=Me, 16) are obtained and these compounds are present in solution as a mixture of cis and trans isomers, with predominance of the former.  相似文献   

17.
Abstract

Previously [1] we have found the possibility of the mechanism alteration for addition of substituted aminophosphonates (RO)2P(O)CHR1NHR2 to PhNCO (where R = alkyles). which depends on the substituents at phosphorus and carbon atoms. We have performed theoretical investigation of basicity and reactivity of alpha- arninophosphonates by PM3 method using HyperChem molecular modeling package, We found that the calculated basicity parameters are in good correlation with our previous experimental data. From the results of the calculations, the whole series can be divided into three subsets: S1 with R1=H and R2=n-Bu; S2 with RI=Ar with electronodonating substituent, R2=cycloHex. S3 with R1=Ar with acceptor substituents, R2=cycloHex. The molecules, which belong to different series, differ in MO distribution on the reaction center NH. The aminophosphinates. containing electrono- withdrawing substituents at both centers (nitrogen and alpha-carbon) are deactivated completely.  相似文献   

18.
A strong deshielding effect is observed for the carbon signal of carbocation center (C+) in the 13C NMR spectra of coordinated propargyl cations [Cp2Mo2(CO)4(μ-η23-(HC≡CCR1R2)]+ BF4 (R1 = R2 = H) 1, (R1 = Me, R2 = H) 2, and (R1 = R2 = Me) 3 when hydrogen is replaced by methyl; the effect increases with the Mo-C+ distance (75.37, 98.3, and 148.68 ppm for compounds 1, 2, and 3, respectively). This indicates that the back-donation of electron density from the metal onto the ligand makes a substantial contribution to the stabilization of these cations. Original Russian Text ? I.V. Barinov, V.A. Chertkov, 2009, published in Vestnik Moskovskogo Universiteta. Khimiya, 2009, No. 1, pp. 29–34.  相似文献   

19.
The series of bidentate N^N iron(II) and cobalt(II) complexes containing 8-(1-aryliminoethylidene) quinaldine derived ligands, 8-[2,6-(R1)2-4-R2-C6H2NC (Me)]-2-Me-C10H5N, were synthesized and characterized by elemental and spectroscopic techniques. The molecular structures of Co1 (R1 = Me, R2 = H), Co3 (R1 = iPr, R2 = H) and Co4 (R1 = R2 = Me) were confirmed as the distorted tetrahedral by single crystal X-ray diffraction. On treatment with modified methylaluminoxane (MMAO), these complexes exhibited good catalytic activities of up to 5.71 × 105 g mol−1(Fe) h−1 for the ethylene dimerization at 30 °C under 10 atm of ethylene, in which iron pre-catalysts produced butenes with a high selectivity for α-butene. The correlation between metal complexes, catalytic activities and the product formed were investigated under various reaction parameters.  相似文献   

20.
Reactions of the fulvenes C5H4C(R 1 R 2) [(R 1 = CH2CH3, R 2 = CH3 (1); R 1 = R 2 = C2H5 (2); R 1, R 2 = (CH2)4 (3), R 1,R 2 = (CH2)5 (4)] with Mo(CO)6 in refluxing xylene gave the corresponding cyclopentadienyl dimolybdenum carbonyl complexes [(η5-C5H4CR1′R2′Mo(CO)3]2 [(R 1′ = CH2CH3, R 2′ = CH3 (5); R 1′ = R 2′ = C2H5 (6); R 1′, R 2′ = CH(CH2)3 (7); R 1′, R 2′ = CH(CH2)4 (8)], which were characterized by elemental analysis, IR and 1H NMR spectra. The molecular structures were determined by single-crystal X-ray diffraction. The results indicated the exocyclic double bond of the ligands 1 and 2 changed into a single bond and the exocyclic double bond of the ligands 3 and 4 underwent a double-bond isomerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号