首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Switching between P,S- and P,C coordination modes of 3'-phosphinoterthiophene to Ru(II) results in substantial differences in the electronic spectra and cyclic voltammetry of these complexes.  相似文献   

3.
The preparation of palladium (II) complexes having sterically congested azetidines as ligands is described. Diastereomerically pure α-alkylamino and α-alkylimino azetidines react with Na2PdCl4 to afford the corresponding bidendate Pd(II) complexes, whereas 2-cyano azetidines can be used to access bidendate Pd(II) complexes containing an amino-imidate moiety. Preliminary study of the catalytic activity of these new complexes in the Suzuki cross-coupling reaction is presented.  相似文献   

4.
5.
New copper(II) complexes of general formula, Cu(ONS)B (ONS = the di-negatively charged Schiff base, S-benzyl-β-N-(2-hydroxyphenyl) methylendithiocarbazate; B = pyridine, 2,2′-dipyridyl or 1,10-phenanthroline) have been synthesized and characterised by magnetic and spectroscopic measurements. The complex, Cu(ONS)py is four-coordinate and square-planar. Magnetic and spectroscopic data support a five-coordinate, presumably, a trigonal-bipyramidal structure for the [Cu(ONS)dipy] and (Cu(ONS)phen] complexes  相似文献   

6.
The first achiral bent-core banana-shaped bidentate ligands and their Cu(II) and Pd(II) metal complexes have been synthesized and investigated for mesomorphic behaviour. The bidentate ligands exhibit only one enantiotropic mesophase. The ligand having C 6 -alkoxy chains shows a mesophase that has been assigned as a two-dimensional B 1 phase while the C 8 and C 10 homologues stabilize the fluid B 2 mesophase showing antiferroelectric switching characteristics. In constrast, their corresponding Cu(II) and Pd(II) metal complexes are non-mesomorphic.  相似文献   

7.
The first achiral bent-core banana-shaped bidentate ligands and their Cu(II) and Pd(II) metal complexes have been synthesized and investigated for mesomorphic behaviour. The bidentate ligands exhibit only one enantiotropic mesophase. The ligand having C6 -alkoxy chains shows a mesophase that has been assigned as a two-dimensional B1 phase while the C8 and C10 homologues stabilize the fluid B2 mesophase showing antiferroelectric switching characteristics. In constrast, their corresponding Cu(II) and Pd(II) metal complexes are non-mesomorphic.  相似文献   

8.
Platinum(II) dimethyl complexes of the three triphosphines PhP(CH2CH2CH2PPh2)2, PhP(CH2CH2PPh2)2, and PhP(CH2CH2PMe2)2 have been shown by 31P NMR to undergo exchange of the terminal phosphino groups. An exchange route involving a five-coordinate platinum(II) complex is proposed.  相似文献   

9.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

10.
Four complexes of the general formula Ru(NNN)2+2 (N NN = tridentate N-heterocyclic ligand) were synthesized and studied spectroscopically. All exhibit visible absorption spectra that are charge-transfer-to-ligand in origin, are luminescent in glasses at 77 K, and display emission spectra that possess energies, structures, and decay tines that label them as charge transfer.  相似文献   

11.
The ligands D((CH(2))(2)NHPiPr(2))(2) (D = NH 1, S 2) react with (dme)NiCl(2) or (PhCN)(2)MCl(2) (M = Pd, Pt) to give complexes of the form [D((CH(2))(2)NHPiPr(2))(2)MX]X (X = Cl, I; M = Ni, Pd, Pt) which were converted to corresponding iodide derivatives by reaction with Me(3)SiI. Reaction of 1 or 2 with (COD)PdMeCl affords facile routes to [κ(3)P,N,P-NH((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (8a) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)PdMe]Cl (9a) in high yields. An alternative synthetic approach involves oxidative addition of MeI to a M(0) precursor yielding [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)NiMe]I (10), [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 8b Pt 11) and [κ(3)P,S,P-S(CH(2)CH(2)NHPiPr(2))(2)MMe]I (M = Pd 9b, Pt 12). Alternatively, use of NEt(3)HCl in place of MeI produces the species [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MH]X (X = Cl, M = Ni 13a, Pd 14a, Pt 16a). The analogs containing 2; [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)MH]X (M = Pd, X = PF(6)15: M = Pt, X = Br, 17a, PF(6)17b) were also prepared in yields ranging from 74-93%. In addition, aryl halide oxidative addition was also employed to prepare [κ(3)P,N,P-HN(CH(2)CH(2)NHPiPr(2))(2)MC(6)H(4)F]Cl (M = Ni 18, Pd 19) and [κ(3)P,S,P-S((CH(2))(2)NHPiPr(2))(2)Pd(C(6)H(4)F)]Cl (20). Crystal structures of 3a, 4a, 5a, 6a, 8a, 9a, 14b and 16b are reported.  相似文献   

12.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

13.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n -butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N * ) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC * ) mesophase. The metal complexes with n -butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N * phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C * phase of the two ligands.  相似文献   

14.
The thioethers 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L3) and 4-tert-butyl-2,6-bis((2-(dimethylamino)ethylimino)methyl)phenyl(tert-butyl)sulfane (tBu-L4) react with PdCl2(NCMe)2 to give the dinuclear palladium thiophenolate complexes [(L3)Pd2Cl2]+ (2) and [(L4Pd2(mu-Cl)]2+ (3) (HL3= 2,6-bis((2-(dimethylamino)ethylimino)methyl)-4-tert-butylbenzenethiol, HL4 = 2,6-bis((2-(dimethylamino)ethylamino)methyl)-4-tert-butylbenzenethiol). The chloride ligands in could be replaced by neutral (NCMe) and anionic ligands (NCS-, N3-, CN-, OAc-) to give the diamagnetic Pd(II) complexes [(L3)Pd2(NCMe)2]3+ (4), [(L3)Pd2(NCS)2]+ (5), [(L3)Pd2(N3)2]+ (6), [{(L3)Pd2(mu-CN)}2]4+ (7) and [(L3)Pd2(OAc)]2+ (9). The nitrile ligands in and in [(L3)Pd2(NCCH2Cl)2]3+ are readily hydrated to give the corresponding amidato complexes [(L3)Pd2(CH3CONH)]2+ (8) and [(L3)Pd2(CH2ClCONH)]2+ (10). The reaction of [(L3)Pd2(NCMe)2]3+ with NaBPh4 gave the diphenyl complex [(L3)Pd2(Ph)2]+ (11). All complexes were either isolated as perchlorate or tetraphenylborate salts and studied by IR, 1H and 13C NMR spectroscopy. In addition, complexes 2[ClO4], 3[ClO4]2, 5[BPh4], 6[BPh4], 7[ClO4]4, 9[ClO4]2, 10[ClO4]2 and 11[BPh4] have been characterized by X-ray crystallography.  相似文献   

15.
Manganese alkyl complexes stabilised by 2,6-bis(N,N'-2,6-diisopropyl-phenyl)acetaldiminopyridine ((iPr)BIP) have been selectively prepared by reacting suitable alkylmanganese(II) precursors, such as homoleptic dialkyls [(MnR(2))(n)] or the corresponding THF adducts [{MnR(2)(thf)}(2)] with the mentioned ligand. For R=CH(2)CMe(2)Ph or CH(2)Ph, formally Mn(I) derivatives are produced, in which one of the two R groups migrates to the 4-position of the central pyridine ring in the (iPr)BIP ligand. In contrast, a true dialkyl complex [MnR(2)((iPr)BIP)] can be isolated for R=CH(2)SiMe(3). In solution, this compound slowly evolves to the corresponding Mn(I) monoalkyl derivative. A detailed study of this reaction provides insights on its mechanism, showing that it proceeds through successive alkyl migrations, followed by spontaneous dehydrogenation. Protonation of [Mn(CH(2)SiMe(3))(2)((iPr)BIP)] with the pyridinium salt [H(Py)(2)][BAr'(4)] (Ar'=3,5-C(6)H(3)(CF(3))(2)) leads to the cationic species [Mn(CH(2)SiMe(3))(Py)((iPr)BIP)](+). Alternatively, the same complex can be produced by reaction of the pyridine complex [{Mn(CH(2)SiMe(3))(2)(Py)}(2)] with the protonated ligand salt [H(iPr)BIP](+)[BAr'(4)](-). This last reaction allows the synthesis of analogous cationic alkylmanganese(II) derivatives, when precursors of type [MnR(2)((iPr)BIP)] are not available. Treatment of these neutral and cationic (iPr)BIP alkylmanganese derivatives with a range of typical co-catalysts (modified methylaluminoxane (MMAO), B(C(6)F(5))(3), trimethyl or triisobutylaluminum) does not lead to active ethylene polymerisation catalysts.  相似文献   

16.
A series of novel dinuclear platinum(II) complexes were synthesized containing a mixed nitrogen-sulfur donor bidentate chelate system in which the two platinum centers are connected by an aliphatic chain of variable length. The bidentate chelating ligands were selected to stabilize the complex toward decomposition. The pK(a) values and reactivity of the four synthesized complexes, namely, [Pt(2)(S(1),S(4)-bis(2-pyridylmethyl)-1,4-butanedithioether)(OH(2))(4)](4+) (4NSpy), [Pt(2)(S(1),S(6)-bis(2-pyridylmethyl)-1,6-hexanedithioether)(OH(2))(4)](4+) (6NSpy), [Pt(2)(S(1),S(8)-bis(2-pyridylmethyl)-1,8-octanedithioether)(OH(2))(4)](4+) (8NSpy), and [Pt(2)(S(1),S(10)-bis(2-pyridylmethyl)-1,10-decanedithioether)(OH(2))(4)](4+) (10NSpy), were investigated. This system is of special interest because only little is known about the substitution behavior of dinuclear platinum complexes that contain a bidentate chelate that forms part of the aliphatic bridging ligand. Moreover, the ligands as well as the dinuclear complexes were examined in terms of their cytotoxic activity, and the 10NSpy complex was found to be active. Spectrophotometric acid-base titrations were performed to determine the pK(a) values of all the coordinated water molecules. The substitution of coordinated water by thiourea was studied under pseudo-first-order conditions as a function of nucleophile concentration, temperature, and pressure, using stopped-flow techniques and UV-vis spectroscopy. The results for the dinuclear complexes were compared to those for the corresponding mononuclear reference complex [Pt(methylthiomethylpyridine)(OH(2))(2)](2+) (Pt(mtp)), by which the effect of the increasing aliphatic chain length of the bridged complexes could be investigated. The results indicate that there is a clear interaction between the two platinum centers, which becomes weaker as the chain length between the metal centers increases. Furthermore, differences and similarities of the N,S-system were compared to the corresponding dinuclear N,N-system studied previously in our group. In addition, quantum chemical calculations were performed to support the interpretation and discussion of the experimental data.  相似文献   

17.
Oxidation of rhodium(I) carbonyl chloride, [Rh(CO)2Cl]2, with copper(II) acetate or isobutyrate in methanol solutions yields binuclear double carboxylato bridged rhodium(II) complexes with RhRh bonds, [Rh(μ-OOCRκO)(COOMeκC)(CO)(MeOH)]2, where R=CH3 or i-C3H7. According to X-ray data, surrounding of each rhodium atom in these complexes is close to octahedral and consists of another rhodium atom, two oxygens of carboxylato ligands, terminal carbonyl group, C-bonded methoxycarbonyl ligand, and axial CH3OH. Methoxycarbonyl ligand is shown to originate from CO group of the parent [Rh(CO)2Cl]2 and OCH3 group of solvent. N- and P-donor ligands L (p-CH3C6H4NH2, P(OPh)3, PPh3, PCy3) readily replace the axial MeOH yielding [Rh(μ-OOCRκO)(COOMeκC)(CO)(L)]2. The X-ray data for the complex with R=i-C3H7, L=PPh3 showed the same molecular outline as with L=MeOH. Electronic effects of axial ligands L on the spectral parameters of terminal carbonyl group are essentially the same as in the known series of rhodium(I) complexes (an increase of δ13C and a decrease of ν(CO) with strengthening of σ-donor and weakening of π-acceptor ability of L).  相似文献   

18.
The reaction of AMTT (AMTT = 4-amino-3-methyl-1,2,4-triazol-5-thione, HL1) with palladium(II) chloride and triphenylphosphane as a co-ligand in acetonitrile afforded the mononuclear PdII-complex [(PPh3)Pd(HL1)Cl]Cl·2CH3CN (1). The complex [(PPh3)Pd(HL1)I]Cl·1/2H2O (2) was prepared via halogen exchange between 1 and sodium iodide in methanol/acetonitrile. The first binuclear palladium(II) complex containing singly deprotonated HL1, [(PPh3)2ClPd(L1)Pd(PPh3)Cl]Cl·1/3H2O·CH3OH (3), was prepared by the reaction of HL1 with palladium(II) chloride and triphenylphosphane in the presence of sodium acetate in methanol.  相似文献   

19.
The reactions of PdCI2(L-L) [L-L = Ph2PCH2PPh2(dppm), Ph2PCH2CH2PPh2(dppe) and Ph2PCH2CH2CH2PPh2(dppp)] with equivalent amount of (Ph2P(S)NHP(S)Ph2)(dppaS2) gave the complexes [Pd(L-L)(dppaS2-H)]ClO4 [L-L = dppm (1), dppe (2), dppp (3)]. The different synthetic route was used for complex 2 by using of Pd(dppe)Cl2 and K[N(PSPh2)2] as starting materials (2a). All of these complexes have been characterized 31P{1H} NMR, IR and elemental analyses. The complexes 2, 2a and 3 were crystallographically characterized. The coordination geometry around the Pd atoms in these complexes distorted square planar. Six membered dppaS2-H rings are twist boat conformations in three complexes.  相似文献   

20.
A series of water-soluble platinum(II) complexes containing bidentate imino pyridine ligands L of the general formula LPtX2 (X=Cl or Me) have been prepared. The dichloro complexes are very stable in water or dimethyl sulfoxide (DMSO), even at elevated temperatures, whereas the dimethyl complexes are less stable in these strongly polar solvents. In DMSO, an equilibrium between the complex LPtMe2 and (DMSO)2PtMe2 is observed, whereas in water decomposition is observed within 1 day at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号