首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclopalladated tetranuclear Pd(II) complexes, [Pd2(micro-Cl)2(Y)]2 (Y = L1 or L2; H2L1 = di(2-pyridyl)-2,2'-bithiophene; H2L2 = 5,5'-di(2-pyridyl)-2,2':5',2'-terthiophene), containing two pyridyl-alpha, alpha'-disubstituted derivatives of thiophene were prepared. Treating these products with PR3 and subsequently with NaN3 produced the dinuclear Pd-azido complexes [(PR3)2(N3)Pd-Y-Pd(N3)(PR3)2] (Y = L1 or L2) or a cyclometallated complex [(PR3)(N3)Pd-Y'-Pd(N3)(PR3)] (Y' = C,N-L2). Reactions of these Pd-azido complexes with CN-Ar (Ar = 2,6-Me(2)C(6)H(3), 2,6-i-Pr(2)C(6)H(3)) or R-NCS (R = i-Pr, Et, allyl) led to the complexes containing end-on carbodiimido groups [(PMe3)2(N[double bond]C[double bond]N-Ar)Pd-Y-Pd(N[double bond]C[double bond]N-Ar)(PMe3)2] or S-coordinated tetrazole-thiolato groups {(PMe3)2[CN4(R)]S-Pd-Y-Pd-S[CN4)(R)](PMe3)2}. Interestingly, when treated with elemental sulfur, the carbodiimido complexes transformed into the cyclometallated derivatives, [(PMe3)(N[double bond]C[double bond]N-Ar)Pd-Y'-Pd(N[double bond]C[double bond]N-Ar)(PMe3)] (Y' = C,N-L1, C,N-L2). We also report the preparation of linear, thienylene-bridged dinuclear Pd complexes [L2(N3)Pd-X(or X')-Pd(N3)L2] (L = PMe3 or PMe2Ph; H2X = 2,2'-bithiophene or H2X' = 2,2':5',2'-terthiophene) and their reactivity toward organic isocyanide and isothiocyanates.  相似文献   

2.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

3.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

4.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

5.
Mononuclear palladium-hydroxo complexes of the type [Pd(N-N)(C6F5)(OH)][(N-N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me2bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) react with SO2(1 atm) at room temperature in alcohol (methanol, ethanol, propanol or isopropanol) to yield alkyl sulfito palladium complexes [Pd(N-N)(C6F5)(SO2OR)](R = Me, Et, Pr or iPr). Similar alkyl sulfito complexes [Pd(N-N)(C6F5)(SO2OR)](N-N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me or Et) are obtained when [Pd(N-N)(C6F5)Cl] is treated with KOH in the corresponding alcohol ROH and SO2 is bubbled through the solution. The reaction of [Pd(bipy)(C6F5)(OH)] with SO2 in tetrahydrofuran gives [Pd(N-N)(C6F5)(SO2OH)]. The X-ray diffraction study of [Pd(tmeda)(C6F5)(SO2OPr)] has established the sulfur coordination of the propyl sulfito ligand.  相似文献   

6.
Pd(II) and Pt(II) complexes with the anions of the model nucleobases 1-methylthymine (1-MethyH), 1-methyluracil (1-MeuraH), and 1-methylcytosine (1-MecytH) of the types [Pd(dmba)(mu-L)]2 [dmba = N,C-chelating 2-((dimethylamino)methyl)phenyl; L = 1-Methy, 1-Meura or 1-Mecyt] and [M(dmba)(L)(L')] [L = 1-Methy or 1-Meura; L' = PPh(3) (M = Pd or Pt), DMSO (M = Pt)] have been obtained. Palladium complexes of the types [Pd(C6F5)(N-N)(L)] [L = 1-Methy or 1-Meura; N-N = N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bpy), or 4,4'-dimethyl-2,2'-bipyridine (Me2bpy)] and [NBu4][Pd(C6F5)(1-Methy)2(H2O)] have also been prepared. The crystal structures of [Pd(dmba)(mu-1-Methy)]2, [Pd(dmba)(mu-1-Mecyt)]2.2CHCl3, [Pd(dmba)(1-Methy)(PPh3)].3CHCl3, [Pt(dmba)(1-Methy)(PPh3)], [Pd(tmeda)(C6F5)(1-Methy)], and [NBu4][Pd(C6F5)(1-Methy)2(H2O)].H2O have been established by X-ray diffraction. The DNA adduct formation of the new platinum complexes synthesized was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by the platinum complexes on plasmid DNA pBR322 were also obtained. Values of IC50 were also calculated for the new platinum complexes against the tumor cell line HL-60. All the new platinum complexes were more active than cisplatin (up to 20-fold in some cases).  相似文献   

7.
The syntheses of the chloro complexes [Ru(eta5-C5R5)Cl(L)] (R = H, Me; L = phosphinoamine ligand) (1a-d) have been carried out by reaction of [(eta5-C5H5)RuCl(PPh3)2] or {(eta5-C5Me5)RuCl}4 with the corresponding phosphinoamine (R,R)-1,2-bis((diisopropylphosphino)amino)cyclohexane), R,R-dippach, or 1,2-bis(((diisopropylphosphino)amino)ethane), dippae. The chloride abstraction reactions from these compounds lead to different products depending on the starting chlorocomplex and the reaction conditions. Under argon atmosphere, chloride abstraction from [(eta5-C5Me5)RuCl(R,R-dippach)] with NaBAr'4 yields the compound [(eta5-C5Me5)Ru(kappa3P,P'-(R,R)-dippach)][BAr'4] (2b) which exhibits a three-membered ring Ru-N-P by a new coordination form of this phosphinoamine. However, under the same conditions the reaction starting from [(eta5-C5Me5)RuCl(dippae)] yields the unsaturated 16 electron complex [(eta5-C5Me5)Ru(dippae)][BAr'4] (2d). The bonding modes of R,R-dippach and dippae ligands have been analyzed by DFT calculations. The possibility of tridentate P,N,P-coordination of the phosphinoamide ligand to a fragment [(eta5-C5Me5)Ru]+ is always present, but only the presence of a cyclohexane unit in the ligand framework converts this bonding mode in a more favorable option than the usual P,P-coordination. Dinitrogen [(eta5-C5R5)Ru(N2)(L)][BAr'4] (3a-d) and dioxygen complexes [(eta5-C5H5)Ru(O2)(R,R-dippach)][BPh4] (4a) and [(eta5-C5Me5)Ru(O2)(L)][BPh4] (4b,d) have been prepared by chloride abstraction under dinitrogen or dioxygen atmosphere, respectively. The presence of 16 electron [(eta5-C5H5)Ru(R,R-dippach)]+ species in fluorobenzene solutions of the corresponding dinitrogen or dioxygen complexes in conjunction with the presence of [BAr'4]- gave in some cases a small fraction of [Ru(eta5-C5H5)(eta6-C6H5F)][BAr'4] (5a), which has been isolated and characterized by X-ray diffraction.  相似文献   

8.
A straightforward to assemble catalytic system for the intermolecular hydroacylation reaction of beta-S-substituted aldehydes with activated and unactivated alkenes and alkynes is reported. These catalysts promote the hydroacylation reaction between beta-S-substituted aldehydes and challenging substrates, such as internal alkynes and 1-octene. The catalysts are based upon [Rh(cod)(DPEphos)][ClO(4)] (DPEphos=bis(2-diphenylphosphinophenyl)ether, cod=cyclooctadiene) and were designed to make use of the hemilabile capabilities of the DPEphos ligand to stabilise key acyl-hydrido intermediates against reductive decarbonylation, which results in catalyst death. Studies on the stoichiometric addition of aldehyde (either ortho-HCOCH(2)CH(2)SMe or ortho-HCOC(6)H(4)SMe) and methylacrylate to precursor acetone complexes [Rh(acetone)(2)(DPEphos)][X] [X=closo-CB(11)H(6)Cl(6) or [BAr(F) (4)] (Ar(F)=3,5-(CF(3))(2)C(6)H(3))] reveal the role of the hemilabile DPEphos ligand. The crystal structure of [Rh(acetone)(2)(DPEphos)][X] shows a cis-coordinated diphosphine ligand with the oxygen atom of the DPEphos distal from the rhodium. Addition of aldehyde forms the acyl hydride complexes [Rh(DPEphos)(COCH(2)CH(2)SMe)H][X] or [Rh(DPEphos)(COC(6)H(4)SMe)H][X], which have a trans-spanning DPEphos ligand and a coordinated ether group. Compared to analogous complexes prepared with dppe (dppe=1,2-bis(diphenylphosphino)ethane), these DPEphos complexes show significantly increased resistance towards reductive decarbonylation. The crystal structure of the reductive decarbonylation product [Rh(CO)(DPEphos)(EtSMe)][closo-CB(11)H(6)I(6)] is reported. Addition of alkene (methylacrylate) to the acyl-hydrido complexes forms the final complexes [Rh(DPEphos)(eta(1)-MeSC(2)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X] and [Rh(DPEphos)(eta(1)-MeSC(6)H(4)-eta(1)-COC(2)H(4)CO(2)Me)][X], which have been identified spectroscopically and by ESIMS/MS. Intermediate species in this transformation have been observed and tentatively characterised as the alkyl-acyl complexes [Rh(CH(2)CH(2)CO(2)Me)(COC(2)H(4)SMe)(DPEphos)][X] and [Rh(CH(2)CH(2)CO(2)Me)(COC(6)H(4)SMe)(DPEphos)][X]. In these complexes, the DPEphos ligand is now cis chelating. A model for the (unobserved) transient alkene complex that would result from addition of alkene to the acyl-hydrido complexes comes from formation of the MeCN adducts [Rh(DPEphos)(MeSC(2)H(4)CO)H(MeCN)][X] and [Rh(DPEphos)(MeSC(6)H(4)CO)H(MeCN)][X]. Changing the ligand from DPEphos to one with a CH(2) linkage, [Ph(2)P(C(6)H(4))](2)CH(2), gave only decomposition on addition of aldehyde to the acetone precursor, which demonstrated the importance of the hemiabile ether group in DPEphos. With [Ph(2)P(C(6)H(4))](2)S, the sulfur atom has the opposite effect and binds too strongly to the metal centre to allow access to productive acetone intermediates.  相似文献   

9.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

10.
Cationic nitrile complexes and neutral halide and cyanide complexes, with the general formula [MnL1L2(NO)(eta-C5H4Me)]z, undergo one-electron oxidation at a Pt electrode in CH2Cl2. Linear plots of oxidation potential, Eo', vs. nu(NO) or the Lever parameters, EL, for L1 and L2, allow Eo' to be estimated for unknown analogues. In the presence of TlPF6, [MnIL'(NO)(eta-C5H4Me)] reacts with [Mn(CN)L(NO)(eta-C5H4Me)] to give [(eta5-C5H4Me)(ON)LMn(mu-CN)MnL'(NO)(eta5-C5H4Me)][PF6] which undergoes two reversible one-electron oxidations; DeltaE, the difference between the potentials for the two processes, differs significantly for stable cyanide-bridged linkage isomers. Novel pentametallic complexes such as [Mn[(mu-NC)Mn(CNBut)(NO)(eta5-C5H4Me)]4(OEt2)][PF6]2 and [Mn[(mu-NC)Mn(CNXyl)(NO)(eta5-C5H4Me)]4(NO3-O,O')][PF6], containing a trigonal bipyramidal and a distorted octahedral Mn(II) centre, respectively, result either from slow decomposition of the binuclear cyanide-bridged species or from the reaction of anhydrous MnI2 with four equivalents of [Mn(CN)L(NO)(eta5-C5H4Me)] in the presence of TlPF6.  相似文献   

11.
Palladium and platinum complexes with HmtpO (where HmtpO=4,7-dihydro-5-methyl-7-oxo[1,2,4]triazolo[1,5-a]pyrimidine, an analogue of the natural occurring nucleobase hypoxanthine) of the types [M(dmba)(PPh3)(HmtpO)]ClO4[dmba=N,C-chelating 2-(dimethylaminomethyl)phenyl; M=Pd or Pt], [Pd(N-N)(C6F5)(HmtpO)]ClO4[N-N=2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), or N, N, N', N'-tetramethylethylenediamine (tmeda)] and cis-[M(C6F5)2(HmtpO)2] (M=Pd or Pt) (head-to-head atropisomer in the solid state) have been obtained. Pd(II) and Pt(II) complexes with the anion of HmtpO of the types [Pd(tmeda)(C6F5)(mtpO)], [Pd(dmba)(micro-mtpO)] 2, and [NBu4]2[M(C6F5)2(micro-mtpO)]2(M=Pd or Pt) have been prepared starting from the corresponding hydroxometal complexes. Complexes containing simultaneously both the neutral HmtpO ligand and the anionic mtpO of the type [NBu4][M(C6F5)2(HmtpO)(mtpO)] (M=Pd or Pt) have been also obtained. In these mtpO-HmtpO metal complexes, for the first time, prototropic exchange is observed between the two heterocyclic ligands. The crystal structures of [Pd(dmba)(PPh 3)(HmtpO)]+, cis-[Pt(C6F5)2(HmtpO)2].acetone, [Pd(C6F5)(tmeda)(mtpO)].2H2O, [Pd(dmba)(micro-mtpO)]2, [NBu4]2[Pd(C6F5)2(micro-mtpO)]2.CH2Cl2.toluene, [NBu4]2[Pt(C6F5)2(micro-mtpO)](2).0.5(toluene), and [NBu4][Pt(C6F5)2(mtpO)(HmtpO)] have been established by X-ray diffraction. Values of IC50 were calculated for the new platinum complexes cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780 cisR), lung (NCI-H460), and breast cancers (T47D). At 48 h incubation time, both complexes were about 8-fold more active than cisplatin in T47D and show very low resistance factors against an A2780 cell line, which has acquired resistance to cisplatin. The DNA adduct formation of cis-[Pt(C6F5)2(HmtpO)2] and [Pt(dmba)(PPh3)(HmtpO)]ClO4 was followed by circular dichroism and electrophoretic mobility. Atomic force microscopy images of the modifications caused by these platinum complexes on plasmid DNA pB R322 were also obtained.  相似文献   

12.
Reactions of perchlorates of iron(II), nickel(II), and zinc(II) with 2,2':6',2':6',2'"-quaterpyridine (qtpy) gave the first crystallographically established bis-qtpy metal complexes of formula [M(qtpy)(2)][ClO(4)](2) (M = Fe, Ni, Zn). Coordination of two terdentate quaterpyridines to the same center produces a distorted octahedron of six nitrogen atoms around the metal, leaving two pendant pyridyl groups, one for each quaterpyridine. For the diamagnetic zinc system, an NMR investigation has been carried out in order to establish the conditions to obtain the intermediate mono-qtpy complex, of formula [Zn(qtpy)(H(2)O)(2)][ClO(4)](2), which has also been crystallographically established. The corresponding hexafluorophosphate derivatives [M(qtpy)(2)][PF(6)](2) (M = Ni and Zn) were prepared in DMF at room temperature.  相似文献   

13.
6-(1-Methylpyrrol-2-yl)-2,2'-bipyridine, 3, and 6-(selenophene-2-yl)-2,2'-bipyridine, 4, have been prepared and characterized in solution and by structural determinations. Copper(I) complexes [CuL(2)][PF(6)] in which L is 2,2'-bipyridine substituted in the 6-position by furyl, thienyl, N-methylpyrrolyl, selenopheneyl, methyl or phenyl, (L = 1-6) have been synthesized. The complexes have been characterized by electrospray mass spectrometry, and solution NMR and UV-VIS spectroscopies. The single crystal structures of [Cu(1)(2)][PF(6)], [Cu(2)(2)][PF(6)], [Cu(3)(2)][PF(6)], [Cu(5)(2)][PF(6)] and [Cu(6)(2)][PF(6)] have been determined. In those compounds containing an aromatic substituent attached to the bpy unit, the substituent is twisted with respect to the latter. In [Cu(3)(2)][PF(6)] and [Cu(5)(2)][PF(6)], this results in intra-cation π-stacking between ligands which is very efficient in [Cu(3)(2)](+) despite the steric requirements of the N-methyl substituents. Face-to-face stacking between the ligands in the [Cu(2)(2)](+) ion is achieved by complementary substituent twisting and elongation of one Cu-N bond, but there is no analogous intra-cation π-stacking in [Cu(1)(2)](+). Ligand exchange reactions between [CuL(2)][PF(6)] (L = 1-6) and TiO(2)-anchored ligands 7-10 (L' = 2,2'-bipyridine-based ligands with CO(2)H or PO(OH)(2) anchoring groups) have been applied to produce 24 surface-anchored heteroleptic copper(i) complexes, the formation of which has been evidenced by using MALDI-TOF mass spectrometry and thin layer solid state diffuse reflectance electronic absorption spectroscopy. The efficiencies of the complexes as dyes in DSCs have been measured, and the best efficiencies are observed for [CuLL'] with L' = 10 which contains phosphonate anchoring groups.  相似文献   

14.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

15.
The generation of heterobimetallic complexes with two or three bridging sulfido ligands from mononuclear tris(sulfido) complex of tungsten [Et(4)N][(Me(2)Tp)WS(3)] (1; Me(2)Tp = hydridotris(3,5-dimethylpyrazol-1-yl)borate) and organometallic precursors is reported. Treatment of 1 with stoichiometric amounts of metal complexes such as [M(PPh(3))(4)] (M = Pt, Pd), [(PtMe(3))(4)(micro(3)-I)(4)], [M(cod)(PPh(3))(2)][PF(6)] (M = Ir, Rh; cod = 1,5-cyclooctadiene), [Rh(cod)(dppe)][PF(6)] (dppe = Ph(2)PCH(2)CH(2)PPh(2)), [CpIr(MeCN)(3)][PF(6)](2) (Cp = eta(5)-C(5)Me(5)), [CpRu(MeCN)(3)][PF(6)], and [M(CO)(3)(MeCN)(3)] (M = Mo, W) in MeCN or MeCN-THF at room temperature afforded either the doubly bridged complexes [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)M(PPh(3))] (M = Pt (3), Pd (4)), [(Me(2)Tp)W(=S)(micro-S)(2)M(cod)] (M = Ir, Rh (7)), [(Me(2)Tp)W(=S)(micro-S)(2)Rh(dppe)], [(Me(2)Tp)W(=S)(micro-S)(2)RuCp] (10), and [Et(4)N][(Me(2)Tp)W(=S)(micro-S)(2)W(CO)(3)] (12) or the triply bridged complexes including [(Me(2)Tp)W(micro-S)(3)PtMe(3)] (5), [(Me(2)Tp)W(micro-S)(3)IrCp][PF(6)] (9), and [Et(4)N][(Me(2)Tp)W(micro-S)(3)Mo(CO)(3)] (11), depending on the nature of the incorporated metal fragment. The X-ray analyses have been undertaken to clarify the detailed structures of 3-5, 7, and 9-12.  相似文献   

16.
A series of cationic palladium complexes of general formula [Pd(Me)(MeCN)(N-N)][PF(6)] (N-N = (phen) 1 a, 4,7-dichloro-1,10-phenanthroline (4,7-Cl(2)-phen) 2 a, 4,7-diphenyl-1,10-phenanthroline (4,7-Ph(2)-phen) 3 a, 4-methyl-1,10-phenanthroline (4-Me-phen) 4 a, 4,7-dimethyl-1,10-phenanthroline (4,7-Me(2)-phen) 5 a, 5,5,6,6-tetrafluoro-5,6-dihydro-1,10-phenanthroline (F(4)-phen) 6 a, containing different substituted phenanthroline ligands, have been prepared from the corresponding neutral chloro derivatives [Pd(Me)(Cl)(N-N)], (1 b-6 b). The X-ray crystal structure of [Pd(Cl)(2)(4,7-Cl(2)-phen)] (2 b') was determined. DFT calculations show that the electron density on the metal is tuned by the substituents on the ligands. The catalytic behavior of complexes 1 a-6 a in the CO/styrene and CO/p-Me-styrene copolymerizations was studied in detail, showing that the generated catalysts are active for at least 90 h, yielding copolymers of high molecular weight. A firm correlation between the electron density on palladium on the one hand and the catalytic activity of the complexes and the molecular weight and the stereochemistry of the polyketones synthesized on the other hand has been established: the catalyst containing the F(4)-phen is thus far the most active among those tested, yielding the syndiotactic CO/styrene copolymer with a stereoregularity of 96 % (uu triad) and with an M(w) value of 1 000 000.  相似文献   

17.
The salts [(eta-C(5)Me(5))Ru(NO)(bipy)][OTf](2) (1[OTf](2)) and [(eta-C(5)Me(5))Ru(NO)(dppz)][OTf](2) (2[OTf](2)) are obtained from the treatment of (eta-C(5)Me(5))Ru(NO)(OTf)(2) with 2,2'-bipyridine (bipy) or dipyrido[3,2-a:2',3'-c]phenazine (dppz) (OTf = OSO(2)CF(3)). X-ray data for 1[OTf](2): monoclinic space group P2(1)/c, a = 11.553 (4) ?, b = 16.517 (5) ?, c = 14.719 (4) ?, beta = 94.01 (2) degrees, V = 2802 (2) ?(3), Z = 4, R1 = 0.0698. X-ray data for 2[OTf](2): monoclinic space group P2(1)/c, a = 8.911 (2) ?, b = 30.516 (5) ?, c = 24.622 (4) ?, beta = 99.02 (1) degrees, V = 6613 (2) ?(3), Z = 8, R1 = 0.0789. Both 1[OTf](2) and 2[OTf](2) are soluble in water where they exhibit irreversible electrochemical oxidation and reduction. A fluorescence-monitored titration of a DNA solution containing 2[OTf](2) with ethidium bromide provides evidence that 2(2+) intercalates into DNA with a binding constant greater than 10(6) M(-)(1). DNA cleavage occurs when the DNA solutions containing 2[OTf](2) are photolyzed or treated with H(2)O(2) or K(2)S(2)O(8).  相似文献   

18.
The dinuclear mixed-valent complex [(MeC5H4)(dmpe)MnC(2)Mn(dmpe)(C5H4Me)](+)[(eta2-MeC5H4)3Mn](-)[1](+)[2]- (dmpe=1,2-bis(dimethylphosphanyl)ethane) was prepared by the reaction of [Mn(MeC5H4)2] with dmpe and Me(3)SnC[triple chemical bond]CSnMe3. The reactions of [1](+)[2]- with K[PF6] and Na[BPh4] yielded the corresponding anion metathesis products [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][PF6] ([1][PF6]) and [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][BPh4] ([1][BPh4]). These mixed-valent species can be reduced to the neutral form by reaction with Na/Hg. The obtained complex [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)] (1) displays a triplet/singlet spin equilibrium in solution and in the solid state, which was additionally studied by DFT calculations. The diamagnetic dicationic species [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][PF6]2 ([1][PF6]2) was obtained by oxidizing the mixed-valent complex [1][PF6] with one equivalent of [Fe(C5H5)2][PF6]. Both redox processes are fully reversible. The dinuclear compounds were characterized by NMR, IR, UV-visible, and Raman spectroscopy, cyclic voltammetry, and magnetic susceptibility measurements. X-ray diffraction studies were performed on [1][2], [1][PF6], [1][BPh4], and [1][PF6]2.  相似文献   

19.
Complexes [Pd{C,N-Ar{C(Me)=NOH}-2}(μ-Cl)](2) (1) with Ar = C(6)H(4), C(6)H(3)NO(2)-5 or C(6)H(OMe)(3)-4,5,6, were obtained from the appropriate oxime, Li(2)[PdCl(4)] and NaOAc. They reacted with neutral monodentate C-, P- or N-donor ligands (L), with [PPN]Cl ([PPN] = Ph(3)P=N=PPh(3)), with Tl(acac) (acacH = acetylacetone), or with neutral bidentate ligands N^N (tetramethylethylenediamine (tmeda), 4,4'-di-tert-butyl-2,2'-bipyridine ((t)Bubpy)) in the presence of AgOTf or AgClO(4) to afford complexes of the types [Pd{C,N-Ar{C(Me)=NOH}-2}Cl(L)] (2), [PPN][Pd{C,N-Ar{C(Me)=NOH}-2}Cl(2)] (3), [Pd{C,N-Ar{C(Me)=NOH}-2}(acac)] (4) or [Pd{C,N-Ar{C(Me)=NOH}-2}(N^N)]X (X = OTf, ClO(4)) (5), respectively. Complexes 1 reacted with bidentate N^N ligands in the presence of a base to afford mononuclear zwitterionic oximato complexes [Pd{C,N-Ar{C(Me)=NO}-2}(N^N)] (6). Dehydrochlorination of complexes 2 by a base yielded dimeric oximato complexes of the type [Pd{μ-C,N,O-Ar{C(Me)[double bond, length as m-dash]NO}-2}L](2) (7). The insertion of XyNC into the Pd-C(aryl) bond of complex 2 produced the mononuclear iminoaryloxime derivative [Pd{C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl(CNXy)] (8) which, in turn, reacted with [AuCl(SMe(2))] to give [Pd{μ-N,C,N-C(=NXy)Ar{C(Me)=NOH}-2}Cl](2) (9) with loss of XyNC. Some of these complexes are, for any metal, the first containing cyclometalated aryloximato (6, 7) or iminoaryloxime (8, 9) ligands. Various crystal structures of complexes of the types 2, 3, 6, 7, 8 and 9 have been determined.  相似文献   

20.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号