首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural changes caused by heating of fossilized (amber) and semifossilized (copal) resins have been examined by nuclear magnetic resonance spectroscopy. A set of 28 samples was constituted to include different geographical sources, degrees of maturation, colors, and structural groupings. The onset of structural alterations was determined by observation of the lowest temperature at which spectral changes occurred. Both proton spectra in solution and carbon-13? spectra in the solid state then were recorded of cooled samples after heating for 12 hr at temperature increments, until liquification of the sample began. The spectra of both nuclides exhibit loss of a few peaks, broadening of most peaks, and enhancement of the unsaturated or aromatic region at the expense of saturated resonances. Such changes are irreversible and lead to a harder and less soluble material on cooling. The changes parallel those that occur with maturation of fossil resins or materials that lead to coal.  相似文献   

2.
Terpenoid resins have been mainly used as components of pictorial varnishes and binding media from ancient times. In such latest instances, the resin is mixed with pigments affecting its physical and chemical properties. A new procedure based on gas chromatography-mass spectrometry (GC/MS) has been applied, in this work, in combination with Fourier transform infrared spectroscopy (FTIR), with the aim of determining the changes undergone by di- and triterpenoid resins employed as components of binding media. The GC/MS method is based on the derivatisation of these resins using trimethylsilylimidazol. Characterization of the main components of the di- and triterpenoid fractions and their oxidised products, occurring in the diterpenoid resin colophony and a triterpenoid Mexical copal (Bursera cuneata (Schl) Engl.), has been achieved. Artificially photoaged specimens of pure resin and binary systems pigment+resin prepared as thin films using lead white, ochre yellow, umber raw and verdigris have also been analysed to study the changes undergone by the di- and triterpenoid components of the resins. Oxidation processes taking place on di- and triterpenoids during photoageing are described. Moreover, the results obtained indicate that pigments have a different effect on the two studied resins. Thus, the presence of pigments induces, in general, a catalysing effect on the oxidative polymerisation reactions in the earliest stages of the natural curing of the paint films whereas a loss of the catalysing effectiveness, in particular, for verdigris containing specimens, is observed during photoageing. Complexation of diterpenoid molecules with copper(II) ions in the earliest stages of the curing has also been evidenced by FTIR analysis.  相似文献   

3.
Amber is a fossil resin constituted of organic polymers derived through complex maturation processes of the original plant resin. A classification of eight samples of amber of different geological age (Miocene to Triassic) and geographical origin is here proposed using direct mass spectrometric techniques, i.e. laser desorption ionization (LDI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI), in order to obtain a fingerprint related to the amber origin. Differences and similarities were detected among the spectra with the four methods, showing quite complex spectra, full of ionic species in the mass range investigated (up to m/z 2000). The evaluation required statistical analysis involving multivariate techniques. Cluster analysis or principal component analysis (PCA) generally did not show a clear clustering with respect to the age of samples, except for the APPI method, which allowed a satisfying clustering. Using the total ion current (TIC) obtained by the different analytical approaches on equal quantities of the different amber samples and plotted against the age, the only significant correlation appeared to be that involving APPI. To validate the method, four amber samples from Cretaceous of Spain were analyzed. Also in this case a significant correlation with age was found only with APPI data. PCA obtained with TIC values from all the MS methods showed a fair grouping of samples, according to their age. Three main clusters could be detected, belonging to younger, intermediate and older fossil resins, respectively. This MS analysis on crude amber, either solid or extract, followed by appropriate multivariate statistical evaluation, can provide useful information on amber age. The best results are those obtained by APPI, indicating that the quantity of amber soluble components that can be photoionized decreases with increasing age, in agreement with the formation of highly stable, insoluble polymers.  相似文献   

4.
In this study, fossil (Sequoioxylon) wood from the Oligocene–Miocene transition in İstanbul, Turkey was examined using non-destructive test methods to evaluate changes in anatomical and chemical structure. Molecular changes in the cell wall structure of the wood were determined using Fourier transform infrared (FTIR) and FT-Raman spectroscopy, along with the comparison to recent wood [Sequoiadendron giganteum (Lindl.)]. We found that the cell wall carbohydrates of the fossil wood were significantly more degraded compared with lignin; FT-Raman spectroscopy revealed the degradation in more detail compared with FTIR spectroscopy. FT-Raman spectra also demonstrated that hemicellulose and holocellulose were decreased in the fossil wood. Laser-induced breakdown spectroscopy (LIBS) analysis confirmed that the mass loss was due to the decreased H and O content of the fossil wood sample and was caused by decomposition. Light microscopy also showed that fossil and recent woods have similar anatomic structures, and that the micro-morphological structure of the fossil wood was well-preserved.  相似文献   

5.
Study of normal colorectal tissue by FT-Raman spectroscopy   总被引:2,自引:0,他引:2  
FT-Raman spectroscopy was employed to study normal human colorectal tissues in vitro with the aim of evaluating the spectral differences of the complex colon mucous in order to establish a characteristic Raman spectrum. The samples were collected from 39 patients, providing 144 spectra for the statistical analysis. The results enable one to estabilish three well-defined spectroscopic groups of non-altered coloretal tissues that were consistently checked by statistical (clustering) and biological (histopathology) analyses: group 1 is represented by samples with the presence of epithelial layer, connective tissue papillae, and smooth muscle tissue; group 2 comprises tissues with epithelial layer and connective tissue papillae; group 3 presented mostly fatty and slack conjunctive tissue. The study reveals the existence of an intrinsic spectral variability for each patient that must be considered when sampling tissues fragments to build a spectral database. This is the first step for future studies and applications of Raman spectroscopy to optical biopsy and diagnosis of colorectal cancer.  相似文献   

6.
7.
Fourier transform-near infrared (FT-NIR) and FT-Raman spectrometries have been used to design partial least squares (PLS) calibration models for the determination of the ethanol content of ethanol fuel and alcoholic beverages. In the FT-NIR measurements the spectra were obtained using air as reference, and the spectral region for PLS modeling were selected based on the spectral distribution of the relative standard deviation in concentration. In the FT-Raman measurements hexachloro-1,3-butadiene (HCBD) has been used as an external standard. In the PLS/FT-NIR modeling for ethanol fuel analysis 50 ethanol fuel standards (84.9-100% (w/w)) were used (25 in the calibration, 25 in the validation). In the PLS/FT-Raman modeling 25 standards were used (13 in the calibration, 12 in the validation). The PLS/FT-NIR and FT-Raman models for beverage analysis made use of 24 standards (0-100% (v/v)). Twelve of them contained sugars (1-5% (w/w)), one-half was used in the calibration and the other half in the validation. Different spectral pre-processing were used in the PLS modeling, depending on the type of sample investigated. In the ethanol fuel analysis the FT-NIR pre-processing was a 17 points smoothed first derivative and for beverages no spectral pre-processing was used. The FT-Raman spectra were pre-processed by vector normalization in the ethanol fuel analysis and by a second derivative (17 points smoothing) in the beverage analysis. The PLS models were used in the analysis of real ethanol fuel and beverage samples. A t-test has shown that the FT-NIR model has an accuracy equivalent to that of the reference method (ASTM D4052) in the analysis of ethanol fuel, while in the analysis of beverages, the FT-Raman model presents an accuracy equivalent to the reference method. The limits of detection for NIR and Raman calibration models were 0.05 and 0.2% (w/w), respectively. It has also been shown that both techniques, present better results than gas chromatography (GC) in evaluating the ethanol content of beverages.  相似文献   

8.
Matuszewska A  Czaja M 《Talanta》2002,56(6):1049-1059
Synchronous luminescence analysis was performed in order to identify aromatic compounds in solvent extracts of Baltic amber. The investigated extracts were obtained, for comparisons, as products of extraction by various techniques and solvents. Methylene chloride and ethanol were applied independently for extraction at the ambient temperature (conservative extraction), as well as at the temperature of solvent boiling (extraction in Soxhlet apparatus). Ethanol, as the solvent, was also used for extraction in an ultrasonic bath and for the decoction process. The extraction, by techniques mentioned, of the analysed amber has resulted in products generally containing the same groups of aromatics: mainly naphthalenes, phenanthrenes and anthracenes. Among phenanthrenes, in all samples the retene was also identified, being one of the characteristic links of the diagenetic chain of chemical transformations of vegetal precursors. The identification of a series of individual compounds made, using the synchronous luminescence technique, was verified by the record of conventional emission and excitation spectra. Presented identified compounds were also confirmed by the results of GC-MS analysis. The luminescence analysis was also performed comparatively for fossil resin from Galicia, Spain (Cretaceous) older than Baltic amber (Tertiary, Eocene). The obtained preliminary results of synchronous luminescence analysis suggest the possibility of diversification in this manner of fossil resins of various ages by characterisation of aromatisation degree and alkyl substitution of aromatic rings. It is since well known that aromatisation progress is an indicator of a natural process of maturation of fossil organic matter. However, a greater number of samples should be taken to further testify to the investigations.  相似文献   

9.
Summary This paper shows some preliminary results taken with a commercially available Raman microscope which is based on the Fourier Transform Raman technique using near infrared laser sources. The micro apparatus is described and measurement examples are given. A comparison between spectra taken with the microscope and a conventional macro sample device which is usually utilized in FT-Raman spectroscopy is carried out. Furthermore the differences of FT-Raman and FT-IR microanalysis are studied on the basis of practical results received from spectral data. Limitations due to the physical properties of infrared and Raman microspectroscopy are discussed.The data partly contained in this paper were first presented at the 12th Int. Raman conference, August 1990, Columbia, S.C.Dedicated to the 60th birthday of Professor Bernhard Schrader  相似文献   

10.
The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.  相似文献   

11.
Three fundamental behaviors of vibrational spectroscopy data manipulation routinely associated with Fourier transform infrared (FTIR) spectroscopy are evaluated for near-infrared (NIR) Fourier transform Raman spectroscopy. Spectral reproducibility, spectral subtraction and sensitivity are examined relative to the NIR FT-Raman experiment. Quantitative predictive ability is compared for identical sets of samples containing mixtures of the three xylene isomers. Partial least-squares analysis is used to compare predictive ability. IR performance is found to be better than Raman, though the potential for method development using NIR FT-Raman is shown to be quite promising.  相似文献   

12.
Raman spectroscopy is a powerful and simple method which proved to be very useful in studies of solids. The most widely used Raman spectrometers are FT-Raman instruments with YAG:Nd(3+) laser as an excitation source. However, in the case of samples containing rare earth elements, the quality of FT-Raman spectra is often low due to strong fluorescence effects. We show that, in such cases, anti-Stokes part of the Raman spectra often contains strong, well resolved bands identified as multiphonon-assisted emission bands of Yb(3+) present as an impurity. We show on several examples that analysis of these bands may provide useful structure information, similar to that obtained by "Eu structure probe" method in optical spectroscopy. The Yb(3+) emission can be also measured using standard luminescence detection systems. However, the application of FT-Raman system allows one to obtain good quality spectra in a much cheaper, easier and faster way (in times as short as a few seconds). Moreover, high-sensitivity of FT-Raman spectrometers allows to detect even very small amounts of Yb(3+) impurity.  相似文献   

13.
The utility of infrared (IR) spectroscopy for the determination of strawberry ripeness has been successfully demonstrated. Transmission IR spectra were collected using dried liquid extracts from strawberry flesh. The overall IR feature provided fairly noticeable differences, and the ripeness stage was clearly identified using principal component analysis (PCA). Although all of the extracted components contributed to the resulting spectral features for discrimination, the variation of carbohydrate and amide residues played a major role for providing the selective spectral feature. Additionally, NMR spectra were also collected to quantify the concentrations of three small sugars (alpha-glucose, beta-glucose and sucrose) as well as to evaluate the NMR spectral features at each ripeness step. The concentrations of three sugars increased from early to late growth stages. Both IR and NMR spectroscopies were valuable to elucidate the metabolic signatures for the determining of ripeness stage; however, IR spectroscopy could be more advantageous when fast and high throughput analysis is essential.  相似文献   

14.
In vivo spectra from human subjects can be simulated with a phantom composed of different layers of water, fat and muscle tissue. All three components are necessary to simulate in vivo spectra collected over the combination spectral region (5000–4000 cm−1). Muscle tissue is not required, however, to accurately simulate overtone spectra (6600–5400 cm−1). The near-IR spectral characteristics of fat and muscle tissue from several animal sources are essentially identical to those found for human tissue, hence, the animal source for these phantom components is not critical. Thickness of each tissue layer can be determined by a regression analysis where the in vivo spectrum of interest is regressed against standard absorbance spectra of the necessary model components (water, fat and muscle). In general, in vivo overtone spectra collected across human webbing tissue with a thickness of 6.7 mm can be simulated with water layer thicknesses ranging from 5.0 to 6.4 mm combined with fat layer thicknesses from 1.4 to 4.2 mm.  相似文献   

15.
Fourier transformed-Raman (FT-Raman) and attenuated total reflection-infrared (ATR-IR) spectra of essential oils obtained from marjoram and oregano plants by hydrodistillation are presented. It is shown that the main components of the essential oils can be ascertained through both of these complementary techniques, using spectral information from the pure terpenoids. Spectroscopic analysis is based on the characteristic key bands of the individual volatile substances and therefore, in principle, these techniques allow us to discriminate between different essential oil profiles from individual oil plants of the same species (chemotypes). The combination of vibrational spectroscopy and hierarchical cluster analysis provides a fast, easy and reliable method for chemotaxonomy characterisation. The spectroscopic data presented here correlate very well with those found by gas chromatography (GC) analysis.  相似文献   

16.
The geometry, frequency and intensity of the vibrational bands of isoquinoline (IQ) and 8-hydroxyquinoline (8-HQ) were obtained by the density functional theory (DFT) calculations with the B3LYP functional and 6-31 G* basis set. The vibrational spectral data obtained from the solid phase mid and far FT-IR and FT-Raman spectra of IQ and 8-HQ are assigned based on the results of the normal coordinate calculations. The observed and the calculated spectra are found to be in good agreement.  相似文献   

17.
FT-Raman spectroscopy coupled with amide I band deconvolution was used to monitor the conformational changes of the peptide backbone of sulphite pre-treated wool fibres during stretching. The spectral changes observed are consistent with the transition of -helical to β-pleated sheet structure. These changes, which are most rapid during the early stages of stretching, can be related to protein secondary structure at both the crystalline and molecular levels. Analysis of the amide III region of the spectra reveals that a very small amount of additional disorder is imparted to the peptide backbone as a result of stretching. The consistency in the widths at half-height of the amide I band components implies that stretching does not significantly change the distribution of peptide chain conformations. From the Raman analysis of cells isolated from the stretched fibres, it is evident that conformational changes occur in both the cuticle and cortex. The most evident change, however, is in the cortical cells.  相似文献   

18.
The use of Fourier-transform Raman spectroscopy for characterising lignocellulosics has increased significantly over the last twenty years. Here, an FT-Raman spectroscopic study of changes in the chemistry of waterlogged archaeological wood of Pinus sp. and Quercus sp. from a prehistoric assemblage recovered from northern Greece is presented. FT-Raman spectral features of biodeteriorated wood were associated with the depletion of lignin and/or carbohydrate polymers at various stages of deterioration. Spectra from the archaeological wood are presented alongside spectra of sound wood of the same taxa. A comparison of the relative changes in intensities of spectral bands associated with lignin and carbohydrates resulting from decay clearly indicated extensive deterioration of both the softwood and hardwood samples and the carbohydrates appear to be more deteriorated than the lignin. The biodeterioration of the archaeological timbers followed a pattern of initial preferential loss of carbohydrates causing significant loss of cellulose and hemicellulose, followed by the degradation of lignin.  相似文献   

19.
Principal component analysis (PCA) is widely used as an exploratory data analysis tool in the field of vibrational spectroscopy, particularly near-infrared (NIR) spectroscopy. PCA represents original spectral data containing large variables into a few feature-containing variables, or scores. Although multiple spectral ranges can be simultaneously used for PCA, only one series of scores generated by merging the selected spectral ranges is generally used for qualitative analysis. Alternatively, the combined use of an independent series of scores generated from separate spectral ranges has not been exploited.The aim of this study is to evaluate the use of PCA to discriminate between two geographical origins of sesame samples, when scores independently generated from separate spectral ranges are optimally combined. An accurate and rapid analytical method to determine the origin is essentially required for the correct value estimation and proper production distribution. Sesame is chosen in this study because it is difficult to visually discriminate the geographical origins and its composition is highly complex. For this purpose, we collected diffuse reflectance near-infrared (NIR) spectroscopic data from geographically diverse sesame samples over a period of eight years. The discrimination error obtained by applying linear discriminant analysis (LDA) was improved when separate scores from two spectral ranges were optimally combined, compared to the discrimination errors obtained when scores from singly merged two spectral ranges were used.  相似文献   

20.
The Fourier-transform Raman (FT-Raman), infrared (FT-IR), and UV-visible absorption spectra of four dipyrrinones and two mesobilirubins have been investigated in the solid state and in CH2Cl2 solutions. A detailed spectral analysis, assignment and discussion of these spectra are presented. The bands at 1735-1738, 1691-1707 and 1359-1377 cm(-1) which were assigned to the stretching vibrations of the C-O-C and C-O-H and symmetric deformation of C-H bonds, respectively, can act as a marker to distinguish the compounds of this class. The striking differences between the spectra of the compounds suggest that mesobilirubin XIIIalpha is tending to adopt as ridge-tile conformation, rather than linear conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号