首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through femtosecond (fs) laser pulse irradiation (pulse duration: 65 fs, central wavelength: 800 nm, and repetition rate: 250 Hz), we investigate the morphological evolution of fs laser-induced periodic surface structure on Au and Pt, called a nanostructure-covered large-scale wave (NC-LSW) with a period of tens of microns, densely covered by iterating stripe patterns of nanostructures and microstructures. We show that the surface morphology of NC-LSW crucially depends on the fluence of the laser, the number of irradiating pulses, and the incident beam angle. Our experimental observations allow us to establish a three-step model for the NC-LSW formation: the formation of laser-induced surface unevenness, inhomogeneous energy deposition due to the interference between the incident light and the scattered field, and nonuniform energy deposition due to shielding by the peaks of LSW.  相似文献   

2.
We compared a Ti:sapphire fs laser (790 nm) with a second harmonics (395 nm) fs laser, and then mixed them for ablating polyethylene (PE). Compared to the 790 nm fs laser, the 395 nm fs laser harmonics could etch PE faster. However, isolated carbon was formed on the ablated surface, in addition to C=O and C=C-H bonds. When we mixed a faint beam of the 395 nm fs laser harmonics with the 790 nm fs laser, the etching depth became even deeper. Moreover, the chemical composition of the ablated surface remained unchanged. At a total laser fluence of 80 mJ/cm2, the most suitable laser fluences for the 395 nm fs laser harmonics and the 790 nm fs laser were found to be approximately 2 and 78 mJ/cm2 respectively. PACS 81.65.Cf  相似文献   

3.
By using a second harmonic of near infrared femtosecond (fs) laser (λ=387 nm, 150 fs) with high NA objective lens, fabrication resolution has been greatly improved in nano-fabrication of wide band-gap semiconductor gallium nitride (GaN). We have carried out a wet-chemical-assisted fs laser ablation method, in which the laser beam is focused onto a single-crystal GaN substrate immersed in a concentrated hydrochloric (HCl) acid solution. A two-step processing involving irradiation with a fs laser beam in air followed by wet chemical treatment is also performed for comparison. In the wet-chemical-assisted ablation, theoretical diameters of ablation craters are calculated as a function of pulse energy by assuming that the reaction is based on two-photon absorption. In lower energy, the calculated curve is close to the experimental value, while the actual measured diameters in the region of higher energy are larger than calculated values. In the condition of the highest fabrication resolution, we obtained ablation craters smaller than 200 nm at full width at half maximum. We have also demonstrated the fabrication of two-dimensional (2D) periodic nanostructures on surface of a GaN substrate using the second harmonic single fs-laser pulse. Uniform ablation craters with the size as small as 410 nm in diameter are arranged with a periodicity of 1 μm. Such structures are applicable to 2D photonic crystals which improve the light extraction efficiency for blue LEDs in the near future.  相似文献   

4.
Through femtosecond (fs) laser pulse irradiation, we produce two-dimensional quasiperiodic arrays of nanostructure-covered conical microstructures (NC-CMs) on Ni. We also find that a significant amount of nickel oxide covers NC-CMs owing to the interaction of fs laser pulses with Ni in ambient air. We show that, by controlling the fluence of laser, the reflectance of the fs laser-treated Ni surface can change dramatically in the infrared but the surface still has a high absorptance at UV and visible wavelengths. Because of this unique spectral reflectance, the fs laser-treated Ni surface is well suited for use as a solar absorber surface.  相似文献   

5.
Two-dimensional (2D) complex nanostructures on the surface of ZnO crystal are fabricated by the interference of three 800 nm fs laser beams. The 2D nanostructures exhibit a great enhancement of UV emission excited by infrared fs laser with central wavelengths ranging from 1,200 nm to 2,000 nm. We propose that the defect states in the band gap of 2D nanostructures induced by 800 nm fs laser ablation cause the great enhancement of UV emission. We make theoretical calculations and explain well with the experimental results.  相似文献   

6.
We report observation of nanostructures formed on thin TiN and DLC films that were irradiated by 800- and 267-nm, femtosecond (fs) Ti:sapphire laser pulses at an energy fluence slightly above the ablation threshold. On the ablated thin-film surfaces, the linearly polarized fs pulses produce arrays of fine periodic structures that are almost oriented to the direction perpendicular to the laser polarization, while the circularly polarized light forms fine-dot structures. The size of these surface structures is 1/10–1/5 of the laser wavelength and decreases with a decrease in the laser wavelength. Received: 3 September 2002 / Accepted: 4 September 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +81-778/62-3306, E-mail: yasuma@fukui-nct.ac.jp  相似文献   

7.
The effects of hot electrons on the thermal radiative properties (brightness, duration and spectral shape) and dynamics of solid density plasmas, generated during the interaction of a femtosecond laser and a solid target, are assessed. Line and broadband thermal emissions with duration between 500 fs and 700 fs, have been successfully produced with peak power between 1 and 10 MW, when the fraction of laser energy in the hot electron population was less than 2%, and when the hot electron energy density at the target surface was less than 1 KJ / cm 2 .  相似文献   

8.
We demonstrate the generation of 0.4-keV, sub-27 fs electron pulses using low-intensity laser pulses from a Ti:sapphire oscillator through the excitation of surface plasmon waves on a time scale within the plasmon lifetime. Modeling of the ponderomotive electron pulse acceleration yields electron energy spectra that are in excellent agreement with the observed ones. Our work opens a doorway for time-resolved experimentation using low-power, high-repetition rate laser pulses.  相似文献   

9.
We report the selective metallization of photostructurable glass by femtosecond (fs) laser direct writing followed by electroless copper (Cu) plating. It was found that a Cu thin film can be deposited only on the rough surface of glass ablated by the fs laser. The deposited Cu thin film exhibits strong adhesion and excellent electrical properties. A Cu film can even be deposited on the internal wall of a hollow microchannel inside photostructurable glass by the multiphoton absorption of the fs laser. To show the use of this technique for micro-total-analysis-system (μ-TAS) applications, the fabrication of a microheater operating at temperatures up to 200 °C was demonstrated. PACS 81.05.Kf; 85.40.Ls; 87.85.Va  相似文献   

10.
We observed the increase of the conversion efficiency from laser energy to Kalpha x-ray energy (eta(K)) produced by a 60 fs frequency doubled high-contrast laser pulse focused on a Cu foil, compared to the case of the fundamental laser pulse. eta(K) shows a strong dependence on the nonlinearly modified rising edge of the laser pulse. It reaches a maximum for a 100 fs negatively modified pulse. The hot electron efficient heating leads to the enhancement of eta(K). This demonstrates that high-contrast lasers are an effective tool for optimizing eta(K), via increasing the hot electrons by vacuum heating.  相似文献   

11.
We have measured the temporal shortening of an ultraintense laser pulse interacting with an underdense plasma. When interacting with strongly nonlinear plasma waves, the laser pulse is shortened from 38 +/- 2 fs to the 10-14 fs level, with a 20% energy efficiency. The laser ponderomotive force excites a wakefield, which, along with relativistic self-phase modulation, broadens the laser spectrum and subsequently compresses the pulse. This mechanism is confirmed by 3D particle in cell simulations.  相似文献   

12.
利用结合双温模型的分子动力学模拟方法,研究了飞秒激光与金属相互作用的烧蚀机制.采用中心波长为800 nm,能量密度从0.043 J·cm~(-2)到0.40 J·cm~(-2)不等,脉宽分别为70 fs和200 fs的激光烧蚀金属镍和铝材料.靶材的温度、原子位型以及内部压力随时间的演化展示了材料热物性参量特性和激光参量对烧蚀结果的影响.结果显示材料电子热传导率对飞秒脉宽激光下的影响仍然较大;对比铝和镍的结果可知,铝的电子晶格耦合系数比镍的小,故电子晶格间的温度梯度持续时间较长;铝的电子热传导系数比镍的大,所以材料上下表面电子温度耦合的时间缩短.铝薄膜表面在能量密度为0.40 J·cm~(-2)激光烧蚀下呈现纳米尺寸的晶体结构.  相似文献   

13.
The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15 fs).  相似文献   

14.
We show a unique technique to form dense dislocations locally inside a MgO single crystal with a rock-salt type structure using femtosecond (fs) laser irradiation. Cross-shaped patterns of micrometer size, originating from densely introduced dislocations, are formed spontaneously around the focal point. We controlled the three-dimensional propagation of the dislocations by adjusting the pulse energy of the fs laser and NA of objective lens. The technique may open up a new field of dislocation technology for optical applications.  相似文献   

15.
By combining new studies of the surface topography and the emission characteristics of particles during interaction of ultra-short-laser radiation with surfaces, in particular during laser ablation, three different types of general processes (sub 100 fs electronic processes like Coulomb explosion (CE) or field ion emission by surface optical rectification (SOR), processes related to electronic plasma (FEP) formation (typically a few hundred fs time scale) and thermal ablation (TA)) could be identified to explain ultra-short-laser ablation of matter at laser intensities around the ablation threshold. In particular, the identification of the unique appearance of individual, localized nano-hillocks, typically a few nm in height and with a diameter below typically 50 nm, can be regarded as characteristic for a strong localized potential energy deposition to the electronic system resulting in CE or SOR. The observation and possibility of CE even on metals has implications beyond the field of laser ablation. A remarkable result observed concerns the similarities between laser ablation and sputtering with highly charged ions.  相似文献   

16.
We use calorimetry to determine the energy absorption of femtosecond (fs) laser pulses as a function of incident fluence for Ag, Ag alloys (Ag–Cu and Ag–Pt), and Pt. At low fluences, the measured absorption agrees well with reflectivity data derived from ellipsometry measurements. For Ag and Ag–Cu, the absorbed energy increases nonlinearly with the incident fluence for fluences larger than approximately half of the melting threshold. Near this threshold, the absorption increases by a factor of 3–4. Similar nonlinear absorption is not observed in Pt or Ag–Pt. We propose that the nonlinear absorption is caused by the excitation of d-band electrons below the Fermi surface. For pulse widths longer than 850 fs, the observed nonlinear absorption in Ag diminishes, indicating that diffusive transport and not ballistic transport is the major mechanism of cooling at this excitation level.  相似文献   

17.
We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a nonspherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.  相似文献   

18.
We experimentally demonstrated a new few-cycle pulse compression technique through the cascade of bulk media and hollow-core fiber (HCF) and this compression system has been intensively studied. The pulses with the duration of ∼5 fs and the energy of 0.33 mJ near 800 nm have been generated by compressing the ∼40 fs input pulse from a commercial laser system. In principle, this technique allows compression of pulses with duration of picoseconds to a few cycles (sub-7 fs) and the output can be above 1 mJ.  相似文献   

19.
We present a new mechanism of energy gain of electrons accelerated by a laser pulse.It is shown thatwhen the intensity of an ultrafast intense laser pulse decreases rapidly along the direction of propagation,electrons leaving the pulse experience an action of ponderomotivc deceleration at the descending part ofa lower-intensity laser field than acceleration at the ascending part of a high-intensity field, thus gain netenergy from the pulse and move directly forward. By means of such a mechanism, a megaelectronvoltelectron beam with a bunch length shorter than 100 fs could be realized with an ultrafast(≤30 fs),intense (>10~(19)W/cm~2)laser pulse.  相似文献   

20.
吕志国  滕浩  王立娜  王军利  魏志义 《中国物理 B》2016,25(9):94208-094208
A high-energy femtosecond all ytterbium fiber amplifier based on a chirped-pulse amplification(CPA) technique at a repetition rate of 1 MHz seeded by a dispersion-management mode-locked picosecond broadband oscillator is studied.We find that the compressed pulse duration is dependent on the amplified energy,the pulse duration of 804 fs corresponds to the maximum amplified energy of 10.5 μJ,while the shortest pulse duration of 424 fs corresponds to the amplified energy of 6.75 μJ.The measured energy fluctuation is approximately 0.46% root mean square(RMS) over 2 h.The low-cost femtosecond fiber laser source with super-stability will be widely used in industrial micromachines,medical therapy,and scientific studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号