首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper proposes a novel T‐S fuzzy control method instead of the traditional linear system control method to improve the TCP network performance. Thus a TCP network can be modeled as a T‐S fuzzy system, and by use of linear matrix inequality method and cone complementarity linearization algorithm, a fuzzy state feedback controller is provided while considering the problem of the asynchronous membership grades between the controller and the plant. Simulation results are presented to show that the proposed control approach can guarantee the asymptotical stability of the studied system and the desired queue size. © 2016 Wiley Periodicals, Inc. Complexity 21: 606–612, 2016  相似文献   

2.
3.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

4.
In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the state estimation of uncertain Markovian jumping Hopfield neural networks with mixed interval time‐varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error are globally asmptotically stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay‐dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. Finally a numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   

6.
7.
The stability and stabilization analysis problem is considered in this paper for a class of discrete-time switched fuzzy systems with known sojourn probabilities. By using Lyapunov functional, new delay-dependent sufficient conditions are derived to ensure the stability of the system. Convex combination technique is incorporated and the stability criteria are presented in terms of Linear matrix inequalities (LMIs). Furthermore, the developed approach is extended to address the robust stability and stabilization analysis of the delayed discrete-time switched fuzzy systems with randomly occurring uncertainties. Finally numerical examples are exploited to substantiate the theoretical results.  相似文献   

8.
This paper deals with the problem of stabilization by output feedback control of Takagi–Sugeno (T–S) fuzzy discrete-time systems with a fixed delay by linear programming (LP) and cone complementarity while imposing positivity in closed-loop. The stabilization conditions are derived using the single Lyapunov–Krasovskii Functional (LKF). An example of a real plant is studied to show the advantages of the design procedure.  相似文献   

9.
This article is concerned with the asymptotic stability analysis of Takagi–Sugeno stochastic fuzzy Cohen–Grossberg neural networks with discrete and distributed time‐varying delays. Based on the Lyapunov functional and linear matrix inequality (LMI) technique, sufficient conditions are derived to ensure the global convergence of the equilibrium point. The proposed conditions can be checked easily by LMI Control Toolbox in Matlab. It has been shown that the results are less restrictive than previously known criteria. They are obtained under mild conditions, assuming neither differentiability nor strict monotonicity for activation function. Numerical examples are given to demonstrate the effectiveness of our results. © 2014 Wiley Periodicals, Inc. Complexity 21: 143–154, 2016  相似文献   

10.
This paper focuses on the stability analysis for uncertain Takagi-Sugeno (T-S) fuzzy systems with interval time-varying delay. The uncertainties of system parameter matrices are assumed to be time-varying and norm-bounded. Some new Lyapunov-Krasovskii functionals (LKFs) are constructed by nonuniformly dividing the whole delay interval into multiple segments and choosing different Lyapunov functionals to different segments in the LKFs. By employing these LKFs, some new delay-derivative-dependent stability criteria are established for the nominal and uncertain T-S fuzzy systems in a convex way. These stability criteria are derived that depend on both the upper and lower bounds of the time derivative of the delay. By employing the new delay partitioning approach, the obtained stability criteria are stated in terms of linear matrix inequality (LMI). They are equivalent or less conservative while involving less decision variables than the existing results. Finally, numerical examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.  相似文献   

11.
12.
In this paper, a novel technique based on impulsive fuzzy T–S model is proposed for controlling chaotic systems with parameter uncertainties. According to this new model, a unified methodology for establishing robust stability, asymptotic stability and exponential stability of impulsive controllers is developed. Various robust stability conditions are presented in the form of linear matrix inequalities (LMI). A simple iterative algorithm is also provided for calculating design parameters based on LMI techniques. Finally, a typical design procedure is developed by using well-known chaotic systems for illustration, accompanied by several numerical simulations to demonstrate the validity of the proposed methodology.  相似文献   

13.
In this article, cluster synchronization problem for Lur'e type Takagi–Sugeno (T–S) fuzzy complex networks with probabilistic time‐varying delays is considered. Pinning control strategy is proposed. The probability distribution of the time‐varying delay is considered. In terms of the probability distribution of the delays, a new type of system model with probability‐distribution‐dependent parameter matrices is proposed. Moreover, probabilistic delay is assumed to satisfy certain probability distribution and the probability of the delay takes values in some intervals. By constructing a suitable Lyapunov–Krasovskii functional involving triple integral terms and using Kronecker product with convex combination technique, some sufficient conditions are derived to ensure the cluster synchronization of designed networks such that the linear feedback controller can be used to every cluster. The problem of controller design is converted into solving a series of linear matrix inequalities. The effectiveness of our results is verified through numerical examples and simulations. © 2014 Wiley Periodicals, Inc. Complexity 21: 59–77, 2015  相似文献   

14.
This article investigates the problem of output tracking control for a class of discrete‐time interval type‐2 (IT2) fuzzy systems subject to mismatched premise variables. Based on the IT2 Takagi–Sugeno (T–S) fuzzy model, the criterion to design the desired controller is obtained, which guarantees the closed‐loop system to be asymptotically stable and satisfies the predefined cost function. Moreover, the controller to be designed does not need to share the same premise variables of the system, which enhances the flexibility of controller design and reduces the conservativeness. Finally, two examples are provided to demonstrate the effectiveness of the method proposed in this article. © 2015 Wiley Periodicals, Inc. Complexity 21: 265–276, 2016  相似文献   

15.
Email: elhaous_fati{at}yahoo.fr Corresponding author. Email: elh_tissir{at}yahoo.fr Received on September 8, 2005; Accepted on July 24, 2006 This paper deals with the problem of robust stabilization foruncertain systems with input saturation and time delay in thestate. The parameter uncertainties are time-varying and unknownbut are norm bounded. Sufficient conditions obtained via a linearmatrix inequality formulation are stated to guarantee the localstabilization. The method of synthesis consists in determiningsimultaneously a state feedback control law and an associateddomain of safe admissible states for which the stability ofthe closed-loop system is guaranteed when control saturationseffectively occur. Numerical examples are used to demonstratethe effectiveness of the proposed design technique.  相似文献   

16.
This paper investigates the problem of robust reliable control for a class of uncertain switched neutral systems under asynchronous switching, where the switching instants of the controller experience delays with respect to those of the system and the parameter uncertainties are assumed to be norm-bounded. A state feedback controller is proposed to guarantee exponential stability and reliability for switched neutral systems, and the dwell time approach is utilized for the stability analysis and controller design. A numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

17.
The present paper proposes a new robust fault tolerant control (RFTC) design for continuous-time switched systems. The main objective is to design in an integrated way the couple (controller, observer) that allows to stabilize switched systems even in the presence of actuator faults. A state/fault estimation observer is designed to simultaneously estimate system state and actuator faults. Based on this observer, a fault tolerant controller is developed to stabilize the system and accommodate the actuator faults automatically. The RFTC problem is formalized in the form of linear matrix inequalities (LMI) rather than bilinear matrix inequalities (BMI), to avoid the difficulty of solving BMIs. Finally, a numerical example composed of unstable subsystems is studied to show the applicability and efficiency of the obtained results.  相似文献   

18.
In this paper, the problems of asymptotical stability and stabilization of a class of switched neutral control systems are investigated. A delay-dependent stability criterion is formulated in term of linear matrix inequalities (LMIs) by using quadratic Lyapunov functions and inequality analysis technique. The corresponding switching rule is obtained through dividing the state space properly. Also, the synthesis of stabilizing state-feedback controllers are done such that the close-loop system is asymptotically stable. Two numerical examples are given to show the proposed method.  相似文献   

19.
20.
This paper is devoted to investigating the problem of robust sliding mode control for a class of uncertain Markovian jump linear time-delay systems with generally uncertain transition rates (GUTRs). In this GUTR model, each transition rate can be completely unknown or only its estimate value is known. By making use of linear matrix inequalities technique, sufficient conditions are presented to derive the linear switching surface and guarantee the stochastic stability of sliding mode dynamics. A sliding mode control law is developed to drive the state trajectory of the closed-loop system to the specified linear switching surface in a finite-time interval in spite of the existing uncertainties, time delays and unknown transition rates. Finally, an example is presented to verify the validity of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号