首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙茂 《力学进展》2015,45(1):201501
昆虫是最早出现、数量最多和体积最小的飞行者. 它们能悬停、跃升、急停、快速加速和转弯, 飞行技巧十分高超. 由于尺寸小, 因而翅膀的相对速度很小, 从而进行上述飞行所需的升力系数很大. 但昆虫翅膀的雷诺数又很低. 它们是如何在低雷诺数下产生高升力的, 是流体力学和生物学工作者都十分关心的问题. 近年来这一领域有了许多研究进展. 该文对这些进展进行综述, 并对今后工作提一些建议. 因2005 年前的工作已在几篇综述文章有了详细介绍, 该文主要介绍2005 年以来的工作. 首先简述昆虫翅的拍动运动及昆虫绕流的基本方程和相似参数; 然后对2005 年之前的工作做一简要回顾. 之后介绍2005 年后的进展, 依次为: 运动学观测; 前缘涡; 翅膀柔性变形及皱褶的影响; 拍动翅的尾涡结构; 翼/身、左右翅气动干扰及地面效应; 微小昆虫; 蝴蝶与蜻蜓; 机动飞行. 最后为对今后工作的建议.   相似文献   

2.
Numerical simulation of multi‐bladed lifting rotors in forward flight is considered. The flow‐solver presented is multiblock and unsteady, which is essential for forward flight, and also includes multigrid acceleration to reduce run‐times. A structured multiblock grid generator specifically for rotor blades has also been developed and is presented here. Previous work has shown that hovering lifting rotor flows are particularly expensive to simulate, since the capture of the vortical wake below the disc requires a long numerical integration time; more than 20 revolutions for an unsteady simulation, or more than 40000 time‐steps for a single grid steady simulation. It is demonstrated here that only two or three revolutions are required to obtain a converged solution for forward flight, since the wake is swept downstream. This requires less than 1.5 × the run‐time of a steady hovering simulation, for the same grid density around each blade, even though an unsteady simulation is required and the complete disk must be solved rather than one blade as in hover. It is demonstrated that very fine meshes are required to capture the unsteady tip vortex motion, and the effects on blade loading of blade‐vortex interaction and rotor shaft inclination are also considered. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
A model of dynamics and heating of a plasma cloud in a magnetic field is considered in a two-temperature approximation. Based on a predictor-corrector-type implicit difference scheme, spreading of a plasma cloud in an external magnetic field is numerically simulated, and the influence of this field on spread dynamics is evaluated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 121–132, May–June, 2007.  相似文献   

4.
建立了不可压缩Navier-Stokes方程的Crank-Nicolson有限差分方法,数值模拟水槽晃动中流场及其涡流的数值变化规律。将数值解与解析解和前人的数值解进行比较,数值验证了不可压缩Naver-Stokes方程有限差分方法的有效性。通过数值模拟得到水槽在不同程度的倾斜激励晃动下流场及涡流的数值变换规律,当倾斜激励晃动的频率接近或远离共振频率时,水槽涡场的变化逐步由双涡变成单涡,再到不规则的涡场。当倾斜激励晃动的频率靠近共振频率ω_p=0.95ω_1附近时,水槽流场上部形成一个小涡,然后小涡扩大成整个水槽中的大涡,大涡下沉分裂成两个单涡,最后在底部消失;当倾斜激励晃动的频率在ω_p=0.75ω_1附近时,水槽底部形成一个小涡,然后扩大成大的单涡,最后在自由面消失;当倾斜激励晃动的频率在ω_p=0.55ω_1附近时,水槽底部出现小涡,然后扩大成大的单涡,大涡在自由面消失,继而出现不规则的大涡和不规则的小涡。  相似文献   

5.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
为了提高惯性器件仿真的真实性,飞行仿真转台被广泛应用于半实物仿真系统.但是飞行仿真转台的响应误差、响应滞后、非线性等特性影响了整个半实物仿真系统的性能.采用卡尔曼滤波器对转台的状态进行估计,并设计了带有前馈的闭环控制器,减小了飞行仿真转台的低频相位滞后.通过对转动轴上的转动惯量进行辨识,控制器的参数可以自动调整来减小负载惯量变化对系统的影响,同时控制器对系统的力矩扰动进行了补偿.经过试验验证,转台小信号运行时的失真度残小为原来的1/5,动态仿真性能也有显著提高.  相似文献   

7.
A numerical simulation of minimum B‐jumps in horizontal rectangular channels having an abrupt drop is given. Gradually varied, steady, supercritical flow is assumed as the initial condition. An unsteady flow is created by increasing the downstream depth. One‐dimensional, unsteady Saint‐Venant equations are solved by using the MacCormack and the dissipative two–four explicit finite difference schemes. The steady flow solution is obtained by treating the time variable as an iteration parameter and letting the solution converge to the steady state. The abrupt drop is treated as an interior boundary and solved by the method of characteristics. The results are compared with experimental and analytical studies. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the supersonic chemically reacting mixing layer is simulated with the third order ENN scheme, based on the Navier-Stokes equations, containing transport equations of all species. The numerical results show that the thickness of mixing layer increases gradually along the flow direction, and that the Kelvin-Helmholtz instabilities may not exist in mixing layer flows. The project supported by the National Natural Science Foundation of China  相似文献   

9.
An algorithm was developed to numerically simulate plastic-flow localization for simple shear of a thermally plastic and viscoplastic material. The algorithm is based on solving the partial differential equations describing continuum flow. The closing equation is the constitutive relation known in the literature as the power law linking the plastic-strain rate to the flow stress, temperature, and accumulated plastic strain. Calculated relations for the time evolution of the shear-band width and the temperature and plastic strains localized in it agree satisfactorily with experimental relations. Good agreement with experimental results is also obtained for the sample temperature distribution at the developed stage of the localization process.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 173–180, January–February, 2005  相似文献   

10.
The linear and early nonlinear stages of boundary-layer transition at free-stream Mach numberM ==2.0 are investigated by direct numerical simulation of the compressible Navier-Stokes equations. Results from simulations with a large computational box and small-amplitude random initial conditions are compared with linear stability theory. The growth rates of oblique waves are reproduced correctly. Two-dimensional waves show a growth that is modulated in time, indicating the presence of an extra unstable mode which moves supersonically relative to the free stream. Further simulations are conducted to investigate the nonlinear development of two- and three-dimensional disturbances The transition due to oblique disturbance waves is the most likely cause of transition at this Mach number, and is found to lead to the development of strong streamwise vortices.  相似文献   

11.
Two- and three-dimensional spatial direct numerical simulations of a compressible plane jet exhausting into a parallel stream are described. These simulations reveal the inadequacy of a two-dimensional model in capturing the totality of the flow physics. In two dimensions, instabilities evolve into highly organized large-scale mixing events; two-dimensional time-averaged turbulence quantities also suffer from artificial vortex organization. Mean normal velocity profiles show a significant reduction in entrainment with increased compressibility, while the effect is much less pronounced in three dimensions. While streamwise and spanwise turbulence intensities exhibit no change with increased compressibility, normal intensity and shear stress are significantly reduced.  相似文献   

12.
In this paper, the “FLIC” difference method with triangular mesh is adopted to numerically simulate the regular and Mach reflections that occur when a shock wave pass around a wedge. The compuational result is compared with the shock tube experimental results of G. Ben-Dor and I. I. Glass. The comparison shows that the position, shape of shock wave and height of Mach stem all show a good agreement. Consequently, the “FLIC” difference method with triangular mesh is quite satisfactory in numerical simulation of the regular and Mach reflections.  相似文献   

13.
In this paper, turbulence in a complicated pipe is simulated by using the k-ε model. The ladder-like mesh approximation is used to solve the problem of complicated boundary with the result of numerical simulation favorable. Two computational examples are given to validate the strong adaptability and stability of k-ε model.  相似文献   

14.
动能杆定向抛撒规律的数值模拟   总被引:2,自引:0,他引:2  
针对反导动能杆的定向抛撒 ,应用数值模拟软件AUTODYN 2D对动能杆的定向爆炸驱动和相互作用过程进行了数值仿真 ,获得了杆条抛撒速度和飞散角等变化规律。即在杆条排布结构不变的情况下 ,随装药弧度的减小 ,杆条的飞散角增大 ,而杆条飞散的平均速度则随装药弧度的减小而减小。与所进行的动能杆定向抛撒装置试验对比 ,试验结果与数值模拟结果基本一致。  相似文献   

15.
环形通道内湍流旋流流动的数值模拟   总被引:1,自引:0,他引:1  
张健 N  eh  S 《计算力学学报》2000,17(1):14-21
本文应用一种考虑湍流-旋流相互作用及湍流脉动各向异性的新的代数Reynolds应力模型,对环形通道内的湍流旋流流动进行了数值模拟,研究了改主为旋流流数,进口轴向速度及半径比等参数对环形通道内湍流流动的影响,以及对强化环形通道内传热的作用。  相似文献   

16.
The paper proposes a physical model for the motion of the contact line and the gas-liquid interface. The local motion of the contact line at the solid wall is assumed and the interface between gas and liquid is traced by a level function. The numerically. The motion of the water column in a vertical pipe is computed and the results are in good agreement with experimental data.  相似文献   

17.
本文采用TVD格式求解二维可压非定常Euler方程组,对二维超声速混压式进气道进行了数值计算,首先模拟了后部压力对进气道的影响过程,当进气道的后部压力与入口压力的比值逐渐增加时,进气道内的正激波逐渐往前移动,当比值达到一个临界值,进气道将不起动.其次.通过对R52.1和R54.5两种进气道模型进行计算,对它们的总压恢复进行了对比.通过计算得到了喉道处曲线弧的曲率越大,进气道的总压损失越大,进气道也越难起动.  相似文献   

18.
The gap effect is a key factor in the design of the heat sealing in supersonic vehicles subjected to an aerodynamic heat load. Built on S-A turbulence model and Roe discrete format, the aerodynamic environment around a gap on the surface of a supersonic aircraft was simulated by the finite volume method. As the presented results indicate, the gap effect depends not only on the attack angle, but also on the Mach number.  相似文献   

19.
In the present paper, the lateral dynamic flight stability properties of two hovering model insects are predicted by an approximate theory based on the averaged model, and computed by numerical simulation that solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theoretical and simulational results provides a test to the validity of the assumptions made in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The following conclusion has been drawn. The theory based on the averaged model works well for the lateral motion of the dronefly. For the hawkmoth, relatively large quantitative differences exist between theory and simulation. This is because the lateral non-dimensional eigenvalues of the hawkmoth are not very small compared with the non-dimensional flapping frequency (the largest lateral non-dimensional eigenvalue is only about 10% smaller than the non-dimensional flapping frequency). Nevertheless, the theory can still correctly predict variational trends of the dynamic properties of the hawkmoth’s lateral motion.  相似文献   

20.
数值模拟离子强度敏感水凝胶的多场特性   总被引:1,自引:0,他引:1  
尹鹿  袁振  倪勇  李华  何陵辉 《力学学报》2005,37(3):363-367
发展了多物理模型来研究溶液中离子强度敏感水凝胶电-力-化学多场耦合的特性. 模 型的主要控制方程包括:计算水凝胶内外离子浓度分布的Nernst-Planck化学场方程;描述 膨胀变形的力学场方程和描述电场的泊松方程. 无网格有限云团法和牛顿迭代法用来数值离 散和求解控制方程. 通过对比多场耦合的响应, 包括胶的膨胀率和胶内外离子浓度和电势的分布,探讨了影响胶体变形的主要因素. 对数值模拟结果和实验结果进行了对照.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号