首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to synthesize poly-(fluorinated alkanesulfonamides) a series of model experiments were carried out: (1) reactions of fluorinated alkanesulfonyl fluorides with amines, (2) reactions of fluorinated alkanesulfonyl chloride with amines and (3) reactions of sodium salts of fluorinated alkanesulfonamides with alkyl iodides of fluorinated alkanesulfonic acid esters. Seventeen new fluorinated alkanesulfonamides were prepared in good yields, namely: RFO(CF2)2SO2NR1R2 (1a-h), R1R2NSO2RFSO2NR1R2 (2a-h) and [Cl (CF2)4O(CF2)2SO2NH(CH2)3]2 (3). Reaction of RFSO2NH2 with equivalent amount of NaOCH3 and methyl iodide was shown to give both the N-mono- and N,N-di-substituted amides. Consequently the N-monosubstituted alkanesulfonamides were chosen as monomers for syntheses of the poly-(fluorinated alkanesulfonamides) and two new polymers were synthesized. The effect of the condition of the polycondensation on M?n of the polymers were discussed and elemental composition, 19F NMR, IR, M?n, Tg, tensile strength, thermal and chemical stabilities of the polymers were measured. Several new perfluoroalkanesulfonyl chlorides CISO2RFSO2Cl (4a-c) and fluorinated alkanesulfonic acid esters (6a-d) were synthesized. However, reaction of CFCl2CF2O(CF2)2SO2F with AlCl3 was found to give Cl3CCF2O(CF2)2SO2F (5) instead of the expected sulfonyl chloride.  相似文献   

2.
Perfluoroalkenyl phosphonates were formed along with Me3SiF using CF3CF=CF2, CF3CH=CF2, F5SCF=CF2 or F5SCH=CF2 and silylated phosphites, (R1O)2POSiMe3 (R1=Et, SiMe3). This straightforward method could be extended to perfluorobutadienes CF2=C(RF)C(RF)=CF2 (RF F=F, CF3). The formation of CF3C(=O)P(=O)(OSiMe3)2 and further reactions to yield bisphosphonates will be described. Acetylphosphonates, R2C(=O)P(=O)(OSiMe3)2 (R2=CH3, CF3) reacted with the ketimine, CH3C(=NiPr)Ph to give α-hydroxy-γ-imino phosphonates. Trifluoroacetylphenol and 2,6-bis(trifluoracetyl)-4-methyl-phenol have been proven to be versatile precursors for α-and γ-hydroxy phosphonates. Intermediates in these reactions were found to be cyclic λ5σ5P species.  相似文献   

3.
Sodium perfluoroalkanesulfinate, RFSO2Na [RF?Cl(CF2)4, 1a; CF3(CF2)5, 1b; Cl(CF3)6, 1c] reacted with bromine in aqueous solution to give the corresponding sulfonyl bromide RFSO2Br (2a-2c) and in acetonitrile or acetic acid, to form perfluoroalkyl bromide RFBr (3a-3c). Heating in acetonitrile at 80°C, 2a-2c were converted smoothly into 3a-3c. However, reaction of sodium α,α-dichloropolyfluoroalkanesulfinate RCCl2SO2Na (R?CF3, Cl(CF2)n, n=2, 4, 6, 5a-5d) with bromine in aqueous solution gave directly the corresponding bromoalkanes 1-bromo-1,1-dichloropolyfluoroalkane RCCl2Br (6a-6d). In aqueous potassium iodide solution, 1a-1c, 5a and 5b also reacted with iodine to form the corresponding iodo-polyfluoroalkane 4a-4c, 7a and 7b directly. 6a and 7a underwent free radical addition to alkene readily in the presence of free radical initiator and reacted with Na2S2O4 in the usual way to form α,α-dichloropolyfluoroethane sulfinate (5a). 5a was stable in strong acid, but reacted with strong base to yield 10. 5a was oxidised by hydrogen peroxide to the sulfonate 11 and reduced by zinc in dilute acid to from the α-chloro sulfinate 12.  相似文献   

4.
In contrast to RFSO3CH2R(1)(R=hydrogen, alkyl and perfluoroalkyl) and RFSO3CF2RF′ (2), the reactions of difluoromethyl perfluoroalkanesulfonates RFSO3CF2H (3) With nucleophiles are more complicated. Halide inos, X? (X = F, Cl, I) and ethanol only attack the alkoxyl carbon atom, cleaving the C? O bond to give HCF2X (4) and HCF2OEt (5) respectively. Other reagents such as RCO2? (R=CH3, CF3), C6H5S? etc. can either attack the carbon or sulfur atom of 3 to give the corresponding products of C? O and S? O bond cleavages. More basic nucleophiles RO? (R = C6H5, Et) mainly abstract the proton of the HCF2 moiety to produce difluorocarbene. Ether and benzene, which can be alkylated by methyl perfluoroalkanesulfonate, do not react with 3 under similar conditions. The reaction rate of 3 with KF is much slower than that of 1 (R = H). All these data seem to indicate that the shielding effect caused by the two fluorine atoms on the methyl carbon in 3 prevents to some extent the nucleophilic attack on this carbon, but not so completely as in 2 due to the presence of a hydrogen atom.  相似文献   

5.
Enantiomerically pure triflones R1CH(R2)SO2CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3SSCF3. The deprotonation of RCH(Me)SO2CF3 (R=CH2Ph, iHex) with nBuLi with the formation of salts [RC(Me)? SO2CF3]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2CF3 group of (S)‐MeOCH2C(Me)(CH2Ph)SO2CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2C(Me)(CH2Ph)Et of 96 % ee. Racemization of salts [R1C(R2)SO2CF3]Li follows first‐order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα? S bond rotation as the rate‐determining step. Lithium α‐(S)‐trifluoromethyl‐ and α‐(S)‐nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α‐(S)‐tert‐butylsulfonyl carbanion salts. Whereas [PhCH2C(Me)SO2tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half‐life of racemization at ?105 °C of 2.4 h, that of [PhCH2C(Me)SO2CF3]Li at ?78 °C is 30 d. DNMR spectroscopy of amides (PhCH2)2NSO2CF3 and (PhCH2)N(Ph)SO2CF3 gave N? S rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2C(Ph)SO2R]M (M=Li, K, NBu4; R=CF3, tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2C(Ph)SO2CF3]Li? L }2 ( L =2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2C(Ph)SO2CF3]NBu4 have the typical chiral Cα? S conformation of α‐sulfonyl carbanions, planar Cα atoms, and short Cα? S bonds. Ab initio calculations of [MeC(Ph)SO2tBu]? and [MeC(Ph)SO2CF3]? showed for the fluorinated carbanion stronger nC→σ* and nO→σ* interactions and a weaker benzylic stabilization. According to natural bond orbital (NBO) calculations of [R1C(R2)SO2R]? (R=tBu, CF3) the nC→σ*S? R interaction is much stronger for R=CF3. Ab initio calculations gave for [MeC(Ph)SO2tBu]Li ? 2 Me2O an O,Li,Cα contact ion pair (CIP) and for [MeC(Ph)SO2CF3]Li ? 2 Me2O an O,Li,O CIP. According to cryoscopy, [PhCH2C(Ph)SO2CF3]Li, [iHexC(Me)SO2CF3]Li, and [PhCH2C(Ph)SO2CF3]NBu4 predominantly form monomers in tetrahydrofuran (THF) at ?108 °C. The NMR spectroscopic data of salts [R1(R2)SO2R3]Li (R3=tBu, CF3) indicate that the dominating monomeric CIPs are devoid of Cα? Li bonds.  相似文献   

6.
The reaction of N-sulfinyltrifluoromethanesulfonamide CF3SO2NSO with triethylphosphate and triethylphosphite results in N-(trifluoromethanesulfonyl)triethoxyphosphazene CF3SO2N=P(OEt)3, which upon heating is converted into the diethyl ester of N-trifluoromethylsulfonylamidophosphoric acid CF3SO2NHP(O)·(OEt)2. The latter was also prepared by alcoholysis of N-(trifluoromethanesulfonyl)trichlorophosphazene or of potassium salt of dichloroanhydride of N-trifluoromethylsulfonylamidophosphoric acid, or by the reaction of the salt CF3SO2NHNa with diethylchlorophosphate. Compound CF3SO2N=P(OEt)3 does not rearrange into the isomeric diethyl ester of N-ethyl-N-(trifluoromethylsulfonyl)amidophosphoric acid CF3SO2N(Et)P(O)(OEt)2, contrary to the statement in the literature on the easy rearrangement of phosphazenes RFSO2N=P(OEt)3 into amidates RFSO2N(Et)P(O)(OEt)2.  相似文献   

7.
Reactions of NN-Dihaloperfluoroalkaneamines with Sulfur and Sulfur Derivatives Reactions of NN-Dihaloperfluoroalkaneamines RfNX2 (Rf = CF3, C2F5; X = Cl, Br) with S8, S4N4 and A = SX2 (A = RfN, O) are described. The products isolated are: Sulfurdihalideimides RfNSX2 (Rf = CF3, C2F5; X = Cl, Br), Sulfurdiimides RfNSNRf and Bis(sulfurdiimido)sulfides (RfNSN)2S(Rf = CF3, C2F5). Thionylimides RfNSO were not obtained in preparative quantities.  相似文献   

8.
RFCCMgX reacts with Ac2O to give not only MeC(O)CCRF but also MeC(O)CXC(RF)C(O)Me, and with CF3COOPr it gives CF3C(O)CHC(OPr)RF not CF3C(O)CCRF; RFCCMgBr reacts with Cl2 to give RFCCBr rather than RFCCCl, while with Br2 RFCCMgI similarly gives RFCCI rather than RFCCBr.  相似文献   

9.
Perfluoroalkanesulfonic anhydrides [(RFSO2)2O; RF=CF3,C2F5,C4F9], mixed with the parent acid, decompose thermally to give the corresponding perfluoroalkyl perfluoroalkanesulfonates (RFSO3RF) with liberation of SO2. If the perfluoroalkyl moieties in the anhydride and the acid are different, a mixture of symmetric and unsymmetric esters is obtained. An ionic bimolecular mechanism is deduced from the results, and a new easy synthesis of the symmetric perfluorinated sulfonic esters is proposed.  相似文献   

10.
Perfluorinated sulphonic esters RFSO3R'F and fluorosulphates FSO3R'F, are easily obtained by anodic oxidation of iodoperfluoroalkanes R'FI in perfluoroalkane sulphonic acids RFSO3H (RF  CF3, C2F5, C4F9) and fluorosulphuric acid. With di-iodo compound I(CF2)4I, the mono and the diester can be selectively obtained. The alkaline hydrolysis of these esters produces perfluorinated carboxylic compounds. Polyfluorinated iodide R'FCH2CH2I are also oxidized in similar conditions. The mechanism of the electrolytic reaction is discussed.  相似文献   

11.
The reactivity of bis(fluoroalkyl) phosphorochloridates to nucleophiles is summarised. Previous data and the results described here indicate that reactivities decrease in the order: amines>alcohols>thiols. The synthesis of CF3CH2OP(O)(SEt)2 in 30% yield was accomplished by treating CF3CH2OP(O)Cl2 with two molar equivalents of EtSH and Et3N in ether. The chloridates (CF3CH2O)2P(O)Cl and (C2F5CH2O)2P(O)Cl did not react with MeSH in ether at −78 °C or when heated with Pb(SMe)2 in benzene. Ethanethiol and propanethiol reacted with fluorinated chloridates in the presence of triethylamine to give thiolates (RFO)2P(O)SR in 13-41% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH and R was Et or n-Pr. Similarly, reaction of phosphorobromidates (RFCH2O)2P(O)Br, made by brominating the corresponding bis(fluoroalkyl) H-phosphonates, with benzenethiol gave derivatives (RFCH2O)2P(O)SPh in 43 and 46% yield where RF was CF3 and C2F5, respectively. Treatment of the chloridothiolate Cl(EtO)P(O)SMe, prepared in two steps from triethyl phosphite, with fluoroalcohols and triethylamine in ether gave species RFO(EtO)P(O)SMe in 62-74% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH. The reactions of bis(trifluoroethyl) phosphorochloridate with 2-mercaptoethanol, 3-mercaptopropanol and ethane-1,2-dithiol gave several unexpected products whose structures were tentatively assigned.  相似文献   

12.
Hydrofluoroethers are shown to alkylate tertiary amines readily under solvent‐free conditions, affording valuable tetraalkylammonium perfluoroalkoxides bearing α‐fluorines. The reaction of RFCF2? OCH3 (RF=CF2CF3, CF2CF2CF3, and CF(CF3)2) with NR1R2R3 produces twenty new α‐perfluoroalkoxides, [(CH3)NR1R2R3][RFCF2O] under mild conditions. These α‐perfluoroalkoxides are easy to handle, thermally stable, and can be used for the perfluoroalkoxylation of benzyl bromides.  相似文献   

13.
The interaction between perfluoroorgano iodides (RfI where Rf = F(CF3)2C(CF2CF2)3, n-C6F13,n-C8F17, F(CF3)2COCF2CF2,F(CF3)2CO(CF2CF2)4 andC2H5OC(O)(CF2CF2) with cadmium in an acetonitrilesolvent media produces primarily the coupled products (RfRf,72–90% yield) in addition to minor quantities of the reduction products (RfH). On the other hand ICF2CF2I and C1CF2CFC1I, by a 1,2-dehalogenation reaction, form the olefins CF2 = CF2 and CF2 = CFC1, respectively, as the principal products. The interaction of RfI compounds with cadmium in other solvent media, e.g. diethyl ether. tetrahydrofuran (THF), N,N-dimethylformamide (DMF), and bis(2-methoxyethyl)ether(diglyme) were examined and found to produce a different ratio of RfRf and RfH products. {ft*}Present address: Fluidics Inc., P.O.Box 1886, Dayton, OH 45429 U.S.A.  相似文献   

14.
Using PTC or cosolvent, both perfluoroalkyl bromides such as Br (CF2)2O(CF2)2SO2Na ( 1 ), Br(CF2)2OCF2CO2H ( 2 ), Cl(CF2)4Br ( 3 ), Cl(CF2Br ( 4 ), n-C6F13Br ( 5 ), n-C8F17Br ( 6 ), H(CF2)8Br ( 7 ), α, ω-dibromides O(CF2CF2Br)2 ( 8 ), Br(CF2)6Br ( 9 ) and Br(CF2)8Br ( 10 ) reacted readily with Na2S2O4 in the presence of NaHCO3 in aqueous solution to form the corresponding perfluoroalkane sulfinates NaO2S(CF2)2O(CF2)2SO2Na ( 11 ), NaO2S(CF2)2OCF2CO2Na ( 12 ), Cl(CF2)4SO2Na ( 13 ), Cl(CF2)2SO2Na ( 14 ), n-C3F13SO2Na ( 15 ), n-C8F17SO2Na ( 16 ), H(CF2)8SO2Na ( 17 ), α, ω-disulfinates O(CF2CF2SO2Na)2 ( 18 ), NaO2S(CF2)4SO2Na ( 19 ) and NaO2S(CF2)8SO2Na ( 20 ) in 66—97% yields. To this new and general reaction of perfluoroalkyl bromides, the name sulfinatodebromination is proposed.  相似文献   

15.
A series of fluorinated β-diketones, RfC(O)CH2C(O)Rf (Rf=C6F13, Rf′=CF3; Rf=Rf′=C6F13, C7F15), have been prepared in reasonable yields by a two-step synthesis. On reaction with appropriate metal substrates, deprotonation and concurrent coordination of the perfluoroalkyl-derivatised β-diketonate ligands affords a range of fluorous metal complexes which have been characterised by elemental analysis, mass spectrometry, IR and NMR spectroscopies. The structures of [Cu(L-L)2(H2O)2] {L-L=CF3C(O)CHC(O)C6F13, C6F13C(O)CHC(O)C6F13} and [Cu(PPh3)2{C7F15C(O)CHC(O)C7F15}] have been determined by single-crystal X-ray diffraction.  相似文献   

16.
Inhaltsübersicht. Die Reaktion von Difluorhalogenmethanen, CF2X2, mit Phosphanen, R3P, in Gegenwart von Metallen und Carbonylverbindungen, R″R′CO, führt zur Bildung geminaler Difluorolefine, R″R′C=CF2. Die sorgfältige Untersuchung der Einzelschritte dieser komplexen Reaktion zeigt, daß intermediär Difluorhalogenmethylphosphoniumhalogenide, [R3P–CF2X]X, und Difluormethylenphosphorane, R3P – c??-F2, gebildet werden. Die Phosphoniumsalze sind stabil und können als kristalline Substanzen isoliert werden. Durch Metalle oder Phosphene werden sie zu den instabilen Difluormethylenphosphoranen reduziert. Diese zersetzen sich beim Fehlen geeigneter Reaktionspartner in Phosphan und Difluorcarben, CF2. Ihre Bildung durch Addition von CF2 an R3P ist nicht möglich. Mit Halogenwasserstoffen bilden sie Difluormethylphosphoniumsalze, [R3P-CHF2]X. Formation and Stability of Difluoromcthylene Phosphoranes, R3P —c?F2 In the presence of metals and carbonyl compounds, R″R′CO, the reaction of difluoro-halomethanes, CF2X2, with phosphanes, R3P, leads to the formation of geminal difluoroolefins, R″R′C=CF2. Our investigations have proved that difluorohalomethylphosphonium halides, [R3P–CF2X]X, and difluoromethylene phosphoranes, R3P–C??F2, are formed intermediately. The phosphonium salts are stable. They can be isolated as crystalline substances. They are reduced by metals or phosphanes forming unstable difluoromethylene phosphoranes as intermediates. These decompose into phosphane and difluorocarbene, CF2, if suitable reactants are absent. Their reaction with hydrogen halides, HX, yields difluoromethylphosphonium salts, [R3P–CHF2]X. The formation of difluoromethylene phosphoranes by addition of CF2 to R3P is not possible.  相似文献   

17.
Perfluoroalkanesulfonyl chlorides [RFSO2Cl ; RF  CF3, C2F3, C4F9], decompose thermally to give the corresponding perfluoroalkyl chlorides with evolution of SO2. The latter retards the reaction, but it is catalysed by copper which also inhibits the SO2 effect. 2-methyl-2-nitrosopropane traps the perfluoroalkyl free radicals. In the presence of a perfluoroalkyl iodide [R′FI ≠ R′F≠RF], other products, RFI and RFCl, are obtained. A free radical chain-mechanism is then suggested.On the other hand, perfluorobutanesulfonyl fluoride is very stable thermally.  相似文献   

18.
Metal Complexes of Biologically Important Ligands, CLVII [1] Halfsandwich Complexes of Isocyanoacetylamino acid esters and of Isocyanoacetyldi‐ and tripeptide esters (?Isocyanopeptides”?) N‐Isocyanoacetyl‐amino acid esters CNCH2C(O) NHCH(R)CO2CH3 (R = CH3, CH(CH3)2, CH2CH(CH3)2, CH2C6H5) and N‐isocyanoacetyl‐di‐ and tripeptide esters CNCH2C(O)NHCH(R1)C(O)NHCH(R2)CO2C2H5 and CNCH2C(O)NHCH(R1)C(O)NHCH (R2)C(O)NHCH(R3)CO2CH3 (R1 = R2 = R3 = CH2C6H5, R2 = H, CH2C6H5) are available by condensation of potassium isocyanoacetate with amino acid esters or peptide esters. These isocyanides form with chloro‐bridged complexes [(arene)M(Cl)(μ‐Cl)]2 (arene = Cp*, p‐cymene, M = Ir, Rh, Ru) in the presence of Ag[BF4] or Ag[CF3SO3] the cationic halfsandwich complexes [(arene)M(isocyanide)3]+X? (X = BF4, CF3SO3).  相似文献   

19.
Dimethyl phosphorochloridate reacted with RFCH2NH2 in ether in the presence of Et3N to afford (MeO)2P(O)NHCH2RF, where RF = CF3 and C2F5, in 39 and 47% yield, respectively. Similar reactions with di-n-propyl and diisopropyl phosphorochloridates could be effected only with H2NCH2CF3 when 4-dimethylaminopyridine catalyst was added and (n-PrO)2P(O)NHCH2CF3 and (i-PrO)2P(O)NHCH2CF3 were isolated in 49 and 25% yield, respectively. Treatment of POCl3 with one molar equivalent each of H2NCH2CF3 and Et3N permitted the synthesis of Cl2P(O)NHCH2CF3 in 43% yield. Bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl, where RF = C2F5CH2, C3F7CH2 and (CF3)2CH, reacted with 2,2,2-trifluoroethylamine and 2,2,3,3,3-pentafluoropropylamine to furnish phosphoramidates (RFO)2P(O)NHCH2R, where R = CF3 or C2F5, in yields of 32-67%.  相似文献   

20.
Synthesis and Properties of Tetrakis(Perfluoroalkyl)Tellurium Te(Rf)4 (Rf = CF3, C2F5, C3F7, C4F9) Te(CF3)4 is obtained from the reaction of Te(CF3)Cl2 with Cd(CF3)2 complexes as a complex with e. g. CH3CN, DMF. It is a light and temperature sensitive hydrolysable liquid. The reaction with fluorides yields the complex anion [Te(CF3)4F], with fluoride ion acceptors the complex cation [Te(CF3)3]+. With traces of water an acidic solution is formed. Te(CF3)4 acts as a trifluoromethylation reagent. The reaction with XeF2 gives hints for the formation of Ye(CF3)4F2. Properties and NMR spectra are discussed. The much more stable complexes of Te(Rf)4 (Rf = C2F5, C3F7, C4F9) are formed from the reaction of TeCl4 with the corresponding Cd(Rf)2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号