首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Banded structures” of macroscopic dimensions can be induced by simple shear flow in many different types of soft matter systems. Depending on whether these bands extend along the gradient or vorticity direction, the banding transition is referred to as “gradient banding” or “vorticity banding,” respectively. The main features of gradient banding can be understood on the basis of a relatively simple constitutive equation. This minimal model for gradient banding will be discussed in some detail, and its predictions are shown to explain many of the experimentally observed features. The minimal model assumes a decrease of the shear stress of the homogeneously sheared system with increasing shear rate within a certain shear-rate interval. The possible microscopic origin of the severe shear-thinning behaviour that is necessary for the resulting nonmonotonic flow curves is discussed for a few particular systems. Deviations between experimental observations and predictions by the minimal model are due to obvious simplifications within the scope of the minimal model. The most serious simplifications are the neglect of concentration dependence of the shear stress (or on other degrees of freedom) and of the elastic contributions to the stress, normal stresses, and the possibility of shear-induced phase transitions. The consequences of coupling of stress and concentration will be analyzed in some detail. In contrast to predictions of the minimal model, when coupling to concentration is important, a flow instability can occur that does not require strong shear thinning. Gradient banding is sometimes also observed in glassy- and gel-like systems, as well as in shear-thickening systems. Possible mechanisms that could be at the origin of gradient-band formation in such systems are discussed. Gradient banding can also occur in strongly entangled polymeric systems. Banding in these systems is discussed on the basis of computer simulations. Vorticity banding is less well understood and less extensively investigated experimentally as compared to gradient banding. Possible scenarios that are at the origin of vorticity banding will be discussed. Among other systems, the observed vorticity-banding transition in rod-like colloids is discussed in some detail. It is argued, on the basis of experimental observations for these colloidal systems, that the vorticity-banding instability for such colloidal suspensions is probably related to an elastic instability, reminiscent of the Weissenberg effect in polymeric systems. This mechanism might explain vorticity banding in discontinuously shear-thickening systems and could be at work in other vorticity-banding systems as well. This overview does not include time-dependent phenomena like oscillations and chaotic behaviour.  相似文献   

2.
The strain-controlled flow of a wormlike micellar solution in cylindrical Couette geometries with smooth and rough glass inner walls is investigated using 2D 1H NMR velocimetry. We find anomalous shear banding in which fluctuating slip dynamics in combination with surfactant properties lead to a non-lever rule behaviour where the interface position remains constant while the high and low shear rates change. Velocities in the flow direction are imaged in the flow-gradient/vorticity plane. The spatiotemporal resolution achieved reveals fluctuations in flow structure along the vorticity axis and instability of the high shear band.  相似文献   

3.
Recently we studied time dependent structural changes that are coupled with flow instabilities (Fischer 1998; Wheeler 1998; Fischer 2000). Within a stability analysis, a classification scheme for the feedback circuit of coupled shear-induced structure and flow instabilities was derived by Schmitt et al. (1995) and applied to our samples. Here, inhomogeneous flow layers of different concentration and viscosity are generated by shear-induced diffusion (spinodal demixing) and, as consequence, one no longer observes a homogeneous solution but a type of shear banding that is seen here for the first time. In this paper we present the behaviour of the first normal stress difference observed in the critical shear-rate regime where transient shear-induced structure is coupled with flow instability. Similar to the oscillations of the shear stresses (strain-controlled rheometer) one observes oscillations in the first normal stress difference. This behaviour indicates that elastic structures are built up and destroyed while the shear-induced structures occur and that the induced phase is more elastic than the initial one. Oscillations of shear stress and first normal stress difference are in phase and indicate that both phenomena are caused by the same mechanism. Received: 30 June 1999/Accepted: 14 December 1999  相似文献   

4.
In this work we attempt to determine the origin of damped stress oscillations upon flow start-up of a nematic liquid crystalline monodomain. These damped stress oscillations were first observed by Gu et al. (1993) in the cone-plate flow cell and have since also been observed by Mather et al. (1997) in the parallel disk cell. Although Mather's work explained the cause of the stress oscillation damping in the torsional flow cell, the origin of the damping in the cone-plate device remains a mystery. Here we report finding similar damped stress oscillations in the cylindrical Couette cell and combined with the optical experiments reported earlier by Cladis and Torza (1975, 1976) we are able to propose an explanation for the damping in this geometry. We also report new optical experiments using the cone-plate cell in hopes of determining a cause to the damping in the cone-plate cell. Received: 11 August 2000 Accepted: 31 October 2000  相似文献   

5.
We explore the behavior of a wormlike micellar solution under both steady and large amplitude oscillatory shear (LAOS) in a cone–plate geometry through simultaneous bulk rheometry and localized velocimetric measurements. First, particle image velocimetry is used to show that the shear-banded profiles observed in steady shear are in qualitative agreement with previous results for flow in the cone–plate geometry. Then under LAOS, we observe the onset of shear-banded flow in the fluid as it is progressively deformed into the non-linear regime—this onset closely coincides with the appearance of higher harmonics in the periodic stress signal measured by the rheometer. These harmonics are quantified using the higher-order elastic and viscous Chebyshev coefficients e n and v n , which are shown to grow as the banding behavior becomes more pronounced. The high resolution of the velocimetric imaging system enables spatiotemporal variations in the structure of the banded flow to be observed in great detail. Specifically, we observe that at large strain amplitudes (γ 0 ≥ 1), the fluid exhibits a three-banded velocity profile with a high shear rate band located in-between two lower shear rate bands adjacent to each wall. This band persists over the full cycle of the oscillation, resulting in no phase lag being observed between the appearance of the band and the driving strain amplitude. In addition to the kinematic measurements of shear banding, the methods used to prevent wall slip and edge irregularities are discussed in detail, and these methods are shown to have a measurable effect on the stability boundaries of the shear-banded flow.  相似文献   

6.
Simple shear rheological properties of solutions of a high molecular weight (8 × 106 g/mol) poly(ethylene oxide) (PEO) and its mixtures with sodium dodecyl sulfate (SDS) have been studied. Shear-thickening effects set in at a critical shear rate for PEO solutions. This particular behavior has not been reported for aqueous solutions of PEO, to our knowledge. The effect is attributed to PEO flow-induced self-aggregation. The experiments were performed in different operation modes (strain rate and stress controlled) and with different geometries (double wall Couette and Couette) and identical viscosities were obtained, which rules out flow instabilities as possible cause for the shear-thickening effect. Shear thickening was observed in the temperature range 15–50°C. Flow-induced PEO degradation occurs for shear rates in the shear-thickening regime, which indicates substantial chain deformation and accumulated stresses in the molecule when shear thickening occurs. Addition of SDS to the PEO solutions induces the formation of surfactant polymer complexes that preserve the characteristic shear-thickening effect.  相似文献   

7.
We study shear banding flows in models of wormlike micelles or polymer solutions, and explore the effects of different boundary conditions for the viscoelastic stress. These are needed because the equations of motion are inherently non-local and include “diffusive” or square-gradient terms. Using the diffusive Johnson–Segalman model and a variant of the Rolie-Poly model for entangled micelles or polymer solutions, we study the interplay between different boundary conditions and the intrinsic stress gradient imposed by the flow geometry. We consider prescribed gradient (Neumann) or value (Dirichlet) of the viscoelastic stress tensor at the boundary, as well as mixed boundary conditions in which an anchoring strength competes with the gradient contribution to the stress dynamics. We find that hysteresis during shear rate sweeps is suppressed if the boundary conditions favor the state that is induced by the sweep. For example, if the boundaries favor the high shear rate phase then hysteresis is suppressed at the low shear rate edges of the stress plateau. If the boundaries favor the low shear rate state, then the high shear rate band can lie in the center of the flow cell, leading to a three-band configuration. Sufficiently strong stress gradients due to curved flow geometries, such as that of cylindrical Couette flow, can convert this to a two-band state by forcing the high shear rate phase against the wall of higher stress, and can suppress the hysteresis loop observed during a shear rate sweep.  相似文献   

8.
In this research experiments were performed to examine the hydrodynamic diffusion of spherical particles in a highly filled suspension. The suspension consisted of nearly monodisperse polymethylmethacrylate spheres in a density matched polymer solution. The polymer solution was prepared by dissolving 0–700 ppm of polyacrylamide in a mixture of ethyleneglycol and glycerine. The polymer solution did not show appreciable shear thinning. The particle loading was varied from 30 to 55%. The hydrodynamic diffusivity was estimated by measuring the time-dependent viscosity when the suspension was subjected to a circular Couette flow with an air bubble trapped under the rotor of the Couette apparatus. The results show that the dimensionless diffusivity (D/γ˙a 2) of particles in polymer solution is not proportional to shear rate (γ˙), as in the case of a Newtonian fluid, but that it decreases with increasing shear rate. The diffusivity also decreases with increasing polymer concentration. It is suggested that the elongational thickening behaviour and the increased lubrication force due to the first normal stress difference may be responsible for the reduction of diffusivity in the polymer solution. Received: 18 January 2000 Accepted: 6 April 2000  相似文献   

9.
The equations of linear and angular momentum for nematic liquid crystals have been described with Ericksen's transversely isotropic fluid [TIF] model and solved for start-up of shear flow at constant rate and varying initial alignment conditions. An analytical solution for the rotation provides predictions of the nematic director which closely agree with experimental results of Boudreau et al. (1999), supporting the validity of Ericksen's TIF model. The solution is limited to flows where the effects of director gradients are negligible. Received: 13 September 1999/Accepted: 24 January 2000  相似文献   

10.
Partially miscible polymers in solution do not separate into two macroscopic phases; in general they behave as viscoelastic fluids containing droplets of the minority phase dispersed into a continuous majority phase (emulsion type systems). Both phases contain two types of polymers and solvent in variable amounts. With time, the smaller droplets tend to merge into larger ones and eventually sediment. Provided the time stability of the emulsion is long enough and the size of the droplets does not exceed a few tens of microns, the emulsion can be characterized by conventional rheological methods as an effective medium, both in the linear regime (viscoelasticity) and under flow. We investigated a ternary system composed by two biopolymers, a protein (caseinate) and a polysaccharide (alginate) in aqueous solution and established an analogy between these phase separated solutions and immiscible blends of polymers. We first characterized the biopolymers and determined the phase diagram at room temperature that we interpreted within the framework of the Edmond and Ogston model. For the rheological investigations, starting with an initial composition of the system, we separated the two phases by centrifugation. The individual phases were then characterized through their viscoelastic and flow behaviors. By recombining variable amounts of these phases, thereby varying only their volume fractions, we were able to prepare stable emulsions with constituents having constant compositions. The effect of shear on these emulsions was investigated. After different shearing protocols, the size of the droplets was derived from the Palierne model and the flow curves were analyzed. The droplet sizes were compared to the critical capillary numbers and coalescence predictions. The flow curves and the dynamic viscosities of the emulsions were interpreted with a model recently proposed by Kroy et al. that extends earlier work of Oldroyd (1953), Schowalter et al. (1968), and Frankel and Acrivos (1970). Received: 11 September 2000/Accepted: 21 December 2000  相似文献   

11.
In this study, a new way of understanding the shear-thickening phenomenon in self-assembled solutions is introduced. The near- and out-of-equilibrium behavior is investigated in four aqueous micellar solutions containing surfactants of the same family: the alkyltrimethylammonium bromide mixed with an ionic salt at equimolar concentration. Thus, the four molecules of surfactants have the same polar head but different aliphatic chain length containing 12, 14, 16, and 18 carbon atoms. In aqueous solutions, the attractive forces between the surfactant molecules depend on the length of the aliphatic chain, thus, varying this parameter will have a definite influence on the aggregation number, the shape and dimension of the micelles. According to our results, the evolution of the low shear viscosity is affected by the chain length. The rheometric measurements performed in steady and time-dependent flows show that the emergence, the range, and the amplitude of the shear thickening also depend on this parameter. However, in the domain of high shear rates, after reaching the maximum of viscosity, all flow curves superimpose irrespective of the chain length. The rheo-optic measurements confirm the apparition of the shear-induced structure (SIS); this new phase is locally oriented and the chain length affects strongly the micelles orientation and the birefringence intensity. These results undoubtedly demonstrate that the chain length plays an important role in the behavior near equilibrium and under shear flow of the micellar systems. Paper presented at the third Annual European Rheology Conference (AERC 2006) on April 27–29, 2006, Crete, Greece.  相似文献   

12.
Low-viscosity micellar aqueous solutions of cetyltrimethylammonium bromide (CTAB) undergo a major change in the presence of the hydrotrope, potassium 1-phenylmethylsulfate (KPhMS), producing a highly viscoelastic entanglement network of polymer-like micelles. The system studied here shows typical shear banding flow behavior, which tends to disappear with increasing the hydrotrope-to-surfactant concentration ratio (C H / C S). The linear rheological response was analyzed with the model of Granek–Cates, whereas the nonlinear behavior was reproduced with the Bautista–Manero–Puig (BMP) model. Both models introduce a kinetic equation to account for the breaking and reformation of the micelles, and they predict the linear and nonlinear rheological data very well. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27–29, 2006.  相似文献   

13.
We report a Brownian configuration field implementation of a recent constitutive equation for suspensions, reported by Phan-Thien et al. 1999. The numerical method is a hybrid technique, which combines a modification of the Brownian configuration field method described by Hulsen et al. 1997 and the adaptive viscosity split stress formulation proposed by Sun et al. 1996. The implementation is used to examine the flow past a sphere in a tube. The relative viscosity derived from the drag force/sedimentation velocity agrees well with a well-known empiricism. In addition, the ratio of the pressure force to the drag on the sphere seems to be weakly dependent on the volume fraction, and is somewhat higher than Brenner's results of 1962, which were derived for Newtonian fluids. Received: 5 April 1999/Accepted: 27 September 1999  相似文献   

14.
In this paper the inhomogeneous response of the (two species) VCM model (Vasquez et al., A network scission model for wormlike micellar solutions. I. Model formulation and homogeneous flow predictions, J. Non-Newtonian Fluid Mech. 144 (2007) 122–139) is examined in steady rectilinear pressure-driven flow through a planar channel. This microstructural network model incorporates elastically active network connections that break and reform mimicking the behavior of concentrated wormlike micellar solutions. The constitutive model, which includes non-local effects arising from Brownian motion and from the coupling between the stress and the microstructure (finite length worms), consists of a set of coupled nonlinear partial differential equations describing the two micellar species (a long species ‘A’ and a shorter species ‘B’) which relax due to reptative and Rouse-like mechanisms as well as rupture of the long micellar chains. In pressure-driven flow, the velocity profile predicted by the VCM model deviates from the regular parabolic profile expected for a Newtonian fluid and exhibits a complex spatial structure. An apparent slip layer develops near the wall as a consequence of the microstructural boundary conditions and the shear-induced diffusion and rupture of the micellar species. Above a critical pressure drop, the flow exhibits shear banding with a high shear rate band located near the channel walls. This pressure-driven shear banding transition or ‘spurt’ has been observed experimentally in macroscopic and microscopic channel flow experiments. The detailed structure of the shear banding profiles and the resulting flow curves predicted by the model depend on the magnitude of the dimensionless diffusion parameter. For small channel dimensions, the solutions exhibit ‘non-local’ effects that are consistent with very recent experiments in microfluidic geometries (Masselon et al., Influence of boundary conditions and confinement on non local effects in flows of wormlike micellar systems, Phys. Rev. E 81 (2010) 021502).  相似文献   

15.
Shear banding occurs in complex fluids that exhibit a non-monotonic constitutive instability, such as wormlike micelles, and potentially also in polymeric fluids with presumably monotonic constitutive behavior. However, velocity profiles for shear thinning fluids in geometries possessing a stress gradient, such as Taylor-Couette flow, could be misidentified as shear banding. To address this, we present a model-free experimental procedure to distinguish shear banding from strong shear thinning using high-resolution velocimetry. The approach is developed and validated using simulations using the d-Giesekus model and is based upon the behavior of the width of the apparent interface between the high and low shear rate regions. It is then tested using experimental data for model wormlike micellar solutions. The method allows shear banding to be distinguished from shear thinning in cases where this difference is otherwise indistinguishable. As a by-product, it also provides an estimate of the stress diffusivities for shear banding fluids.  相似文献   

16.
 The effects of shear flow on the lecithin organogels consisting of reverse polymer-like micelles have been investigated by dynamic rheology. It was established that the shear effects depended on the molar ratio of water to lecithin that determined the micellar type in the system. For an organogel with linear flexible polymer-like micelles, thinning was observed. The main features of the rheological behavior bore a resemblance to previously investigated aqueous systems made up of similar but direct polymer-like surfactant micelles. The thinning effects are explicable on the basis of alignment of micellar aggregates along the flow direction and their disentanglement. An organogel with branched micelles did not demonstrate any notable response to the shearing. Unusual behavior was noticed in the case of a jelly-like phase that included the highest amounts of water. The applied steady shear flow induced a thickening effect. This was followed by restructuring of the micellar system at the level of polymer-like micelles and their network. The shearing effects were characterized by slow kinetics. In addition, the system did not revert to the original state after the cessation of steady shear flow even within 8 h. Measurements performed in an oscillation regime on this system showed that shearing should promote a substantial growth of the polymer-like micelles and affect their alignment. Received: 18 May 1999 Accepted: 27 March 2000  相似文献   

17.
Numerical results of the simulation of the Giesekus model in ω–D form, which has previously been introduced in Part I of this study, are presented. The model has been applied to the flow of a concentrated polymer solution through a planar 3.97:1 contraction. To obtain an accurate fit of the rheological properties of the fluid a four-mode model is used. The predictions of the numerical simulations are directly compared with the experimental results published by Quinzani et al. in 1994. For the velocity fields a good quantitative agreement is reached, especially in the upstream channel. Regarding the shear stress and first normal stress difference, qualitative predictions of the experimental profiles are obtained.  相似文献   

18.
This paper describes an experimental study on dispersions of monodisperse polystyrene (PS) spheres with a typical radius of 1 μm, dispersed in an electrolyte at high ionic strength, screening the electrostatic repulsion. These suspensions gelate at rest even at low volume fractions of PS particles. The density of the particles is matched with the solvent by using deuterium oxide for volume fractions φ≤0.117. Steady-state flow curves, viscosity as a function of shear rate, are measured and reported for 0.014<φ<0.322. The measured flow curves are analyzed on the basis of two models: 1. In the giant floc model (van Diemen and Stein 1983, 1984; Schreuder et al. 1986, 1987; Laven et al. 1988), at low shear rates, the shear is not distributed homogeneously but is limited to certain shear planes; the energy dissipation during steady flow is due primarily to overcoming the viscous drag on the suspended particles during motion caused by encounters of particles in the shear planes. Though this model was developed for higher solid volume fractions (0.35–0.425), we found that it also describes the rheology of dilute particle gels for 0.15≤φ≤0.3, using the same values for the parameters in the model as in the high solid volume fraction region. For φ<0.15, the model also describes the data if the fraction of distance by which a moving particle entrains its neighbors, is assumed to increase in this φ region. 2. The model of de Rooij (de Rooij et al. 1993, 1994) considers aggregates in shear flow to be monodisperse impermeable spheres with a fractal structure. The permeability is taken into account by considering a hydrodynamic radius smaller than the gyration radius in the Krieger-Dougherty expression for the hydrodynamic contribution to the viscosity. Through the use of a yield criterion the aggregate radius is modeled as a function of shear rate. We found that the model describes our experimental results, with a combination of parameter values used already by de Rooij, but only for φ<0.15. Received: 7 May 1998 Accepted: 22 December 1998  相似文献   

19.
Shear banding (SB) is manifested by the abrupt “demixing” of the flow into regions of high and low shear rate. In this paper, we first relate analytically the rheological parameters of the fluid with the range of shear rates and stresses of SB occurrence. For this, we accept that the origin of shear banding is constitutive, and adopt a non-linear viscoelastic expression able to accommodate the double-valuedness of the stress with flow intensity, under certain conditions. We then implement the model for the case of pressure driven flow through a cylindrical pipe; we derive approximate expressions for the velocity profile in the two-banded regions (core and outer annular), the overall throughput in the presence or absence of “spurt”, and the radial location limits of the shear rate discontinuity.  相似文献   

20.
Experimental data of two low-density polyethylene (LDPE) melts at 200°C for both shear flow (transient and steady shear viscosity as well as transient and steady first normal stress coefficient) and elongational flow (transient and steady-state elongational viscosity) as published by Pivokonsky et al. (J Non-Newtonian Fluid Mech 135:58–67, 2006) were analysed using the molecular stress function model for broadly distributed, randomly branched molecular structures. For quantitative modelling of melt rheology in both types of flow and in a very wide range of deformation rates, only three nonlinear viscoelastic material parameters are needed: Whilst the rotational parameter, a 2, and the structural parameter, β, are found to be equal for the two melts considered, the melts differ in the parameter describing maximum stretch of the polymer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号