共查询到20条相似文献,搜索用时 78 毫秒
1.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
2.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
3.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
4.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
5.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
6.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
7.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
8.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
9.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
10.
密度矩阵重正化群方法(DMRG)在求解一维强关联格点模型的基态时可以获得较高的精度,在应用于二维或准二维问题时,要达到类似的精度通常需要较大的计算量与存储空间.本文提出一种新的DMRG异构并行策略,可以同时发挥计算机中央处理器(CPU)和图形处理器(GPU)的计算性能.针对最耗时的哈密顿量对角化部分,实现了数据的分布式存储,并且给出了CPU和GPU之间的负载平衡策略.以费米Hubbard模型为例,测试了异构并行程序在不同DMRG保留状态数下的运行表现,并给出了相应的性能基准.应用于4腿梯子时,观测到了高温超导中常见的电荷密度条纹,此时保留状态数达到104,使用的GPU显存小于12 GB. 相似文献
11.
根据尖峰孤子解的特点,提出了一种待定系数法求非线性波方程尖峰孤子解的思路和方法,并利用该方法求解了5个非线性波方程,即CH(Camassa-Holm)方程、五阶KdV-like 方程、广义Ostrovsky方程、组合KdV-mKdV方程和Klein-Gordon方程,比较简便地得到了这些方程的尖峰孤子解.文献中关于CH方程的结果成为本文结果的特例.通过数值模拟给出了部分解的图像.简要说明了非线性波方程存在尖峰孤子解所须满足的特定条件.该方法也适用于求其他非线性波方程的尖峰孤子解.
关键词:
非线性波方程
尖峰孤子解
待定系数法 相似文献
12.
13.
14.
15.
研究了一类非线性扰动Burgers方程的求解问题. 利用变分迭代方法, 首先引入一个泛函, 然后计算它的变分, 最后构造方程的迭代关系式, 得到了相应方程的孤子解的近似展开式. 相似文献
16.
17.
18.
采用分步确定拟解的原则, 对齐次平衡法求非线性发展方程孤子解的关键步骤作了进一步改 进. 以广义Boussinesq方程和bidirectional Kaup-Kupershmidt方程为应用实例, 说明使用 该方法可有效避免“中间表达式膨胀”的问题, 除获得标准Hirota形式的孤子解外, 还能获 得其他形式的孤子解.
关键词:
齐次平衡法
孤子解
孤波解
广义Boussinesq方程
bidirectional Kaup-Kupershmi dt方程 相似文献
19.
20.
利用Hirota方法及Riemann theta函数得到了一个(3+1)维孤子方程的周期解.在极限情况下,该周期解退化为孤子解.另外,利用计算机技术和Mathematica绘制了解的三维曲面图. 相似文献