共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
利用一个空间零维大气等离子体模型对其中的主要粒子在不同电离度情况下的变化规律进行了研究.得到放电后不同初始电子密度下的电子寿命,同时给出了主要带电粒子和中性粒子密度随时间的演化.结果表明,电子密度随时间快速衰减,电子寿命随电离度的增大而减小.对一些重要的中性粒子(如O,N,O3和NO)随电离度增大的行为进行了分析.
关键词:
电离度
大气等离子体
数值模拟 相似文献
4.
为研究发光等离子体对高功率微波的防护性能,建立了一维条件下等离子体与高功率微波相互作用的物理模型,并采用数值仿真得到了不同条件下的微波透射效果,分析了发光等离子体对高功率微波的防护性能。随后,实验研究了双层柱状等离子体阵列对6 GHz高功率微波脉冲的透射效果,实验结果与仿真结果相符,说明高功率微波的入射使等离子体产生了非线性效应。实验结果还表明,TE极化时的防护效果要优于TM极化时的防护效果;等离子体击穿场强阈值随电场作用空间的增大而减小;TE极化时等离子体对高功率微波脉冲的屏蔽效能最高可达13 d B,且随入射功率的增大而进一步增大。 相似文献
5.
6.
激光击穿大气等离子体的光谱实验研究 总被引:6,自引:0,他引:6
对一个大气压的N2,O2和纯净空气, 用YAG脉冲激光的1.06 μm光束产生激光等离子体, 对该等离子体在大约400-800 nm谱段的发射光谱进行了实验研究. 实验表明, 空气及其主要组分的激光等离子体光谱均由较强的连续光谱背景和迭加在其上的若干线状光谱组成. 随着光谱采样的延时, 激光等离子体中各光谱组分的强度有很不相同的相对变化. 而且, 处于等离子体不同空间部位发出的光谱, 也有很大的不同. 对此类问题的定量分析正在进行之中. 相似文献
7.
8.
9.
光致电离等离子体在宇宙中广泛存在于强辐射场附近. 近年来随着高能量密度实验装置的发展, 在实验室内也能构造出光致电离等离子体. RCF是一个基于The Flexible Atomic Code 数据的针对光致电离等离子体的辐射碰撞模型, 该模型模拟了两个光致电离实验, 其 理论结果中电离态分布和光谱与测量值符合得很好. 在理论模拟中发现, 光致电离等离子体中光致激发和碰撞激发过程对离子态布居和发射光谱都有非常重要的影响. 光致激发过程可以通过将离子激发到双激发态从而间接电离离子; 碰撞激发过程会因为电子将基态离子激发到电离截面小的单激发态而抑制光子对等离子体的电离. 光致激发过程可以加强类锂离子的类氦离子的卫线, 而碰撞激发过程会影响类氦离子谱线的线强之比. 相似文献
10.
11.
本文通过对使用有效场强(或均方根场强)得到的微波大气击穿阈值表达式进行讨论, 指出其推导中所做的假设及这些假设应用到微波大气击穿过程中存在的问题. 然后分别使用解析理论和数值模拟对微波大气击穿过程中的有效电子温度变化过程和击穿阈值进行研究, 并将其与直流电场进行比较. 分析发现在高气压下, 电子能量转移频率高, 有效电子温度随电场大幅振荡, 由于电离频率随有效电子温度的增长率大于电子能量损失随有效电子温度的增长率, 因此在高气压时, 微波大气击穿阈值低于使用有效场强的击穿阈值. 通过大量分析, 给出了理论推导和数值模拟得到的微波大气击穿阈值拟合表达式. 相似文献
12.
将描述电磁波的Maxwell方程组和简化的等离子体流体方程组耦合数值求解, 对垂直相交高功率微波电离大气产生等离子体的过程进行了模拟研究. 对于相干(同频)垂直相交高功率微波束, 只有当初始自由电子出现在(或到达)强场(干涉加强)处, 自由电子才会被加速并与本底气体发生碰撞电离, 在放电的开始阶段, 等离子体区域主要沿着强场区运动, 并逐渐形成一个由分立的丝状等离子体组成的带状区域. 这个带状等离子体区域足够长以后, 由于其对电磁波的吸收和反射, 其将等离子体两侧的两束微波分割开. 随着时间的推移, 在等离子体附近的强场区, 不断出现新的等离子体带. 比较发现, 当其他条件相同时, 相干微波束产生的等离子体区域比非相干微波束大.
关键词:
相交高功率微波束
大气击穿 相似文献
13.
高功率微波大气击穿实验中,入射功率在大气击穿阈值附近,即使外界条件相同,大气击穿可能发生也可能不发生。针对这一问题,基于大气击穿机理,将大气击穿分为首个电子出现在击穿区域和高功率微波电场导致雪崩击穿两个过程。针对第一个过程,建立了改进的电子连续性方程,引入平均电子产生率分析大气击穿发生前电子出现的概率问题;针对第二个过程,建立了高功率微波大气雪崩击穿概率模型。综合两个过程,建立了高功率微波大气击穿概率模型,仿真了不同压强条件下大气击穿的概率,并与相关实验数据进行了比对,仿真结论与实验数据吻合较好。 相似文献
14.
高功率微波大气击穿实验中,入射功率在大气击穿阈值附近,即使外界条件相同,大气击穿可能发生也可能不发生。针对这一问题,基于大气击穿机理,将大气击穿分为首个电子出现在击穿区域和高功率微波电场导致雪崩击穿两个过程。针对第一个过程,建立了改进的电子连续性方程,引入平均电子产生率分析大气击穿发生前电子出现的概率问题;针对第二个过程,建立了高功率微波大气雪崩击穿概率模型。综合两个过程,建立了高功率微波大气击穿概率模型,仿真了不同压强条件下大气击穿的概率,并与相关实验数据进行了比对,仿真结论与实验数据吻合较好。 相似文献
15.
将麦克斯韦方程组和简化等离子体方程耦合求解, 对介质表面附近大气击穿形成等离子体的过程进行了理论研究. 分别使用一维、二维模型对等离子体的形成过程及等离子体对电磁波的反射、吸收过程进行了模拟研究. 一维计算结果发现在ne = 0, j = 0两种边界条件下, 虽然形成的等离子体密度分布相差较大, 但二者得到的微波反射、吸收、透射波形彼此相差不大. 初始电子数密度厚度为20 mm的条件下, 得到界面附近的等离子体密度大于5 mm厚度的情况. 二维计算结果发现, 由于TE10模在波导中心位置处的微波电场最强, 电子碰撞电离首先在中心位置处形成等离子体, 当等离子体密度达到一定值(临界密度附近)时, 波导中心介质表面处微波场强减小, 等离子体区域沿着介质表面向两侧移动. TE10模在波导边缘处微波电场强度小于击穿阈值, 因此等离子体区域不可能移动到波导边缘附近. 相似文献
16.
利用极化正交的高功率微波合路器,开展了等离子体对于微波传输特性的实验研究.通过改变前级源的功率和脉冲宽度,使得在合路器耦合缝处发生射频击穿,产生等离子体.等离子体扩散进入微波传输主通道,对于高功率微波的传输产生明显的影响,导致微波能量吸收和极化的偏转.初步实验结果表明,等离子体扩散到主通道中心的时间约为3μs,扩散速度约为1μs/cm,等离子体的恢复时间约为5μs.实验测得等离子体导致的微波极化方向最大偏转角度约为4.1?,此时通道内电子个数约为3.7×1015,极化偏转角度与电子数密度以及微波频率相关. 相似文献
17.
18.
19.
种子电子是高功率微波大气击穿的根源, 研究高功率微波大气击穿时, 一般假设背景大气中存在种子电子, 此假设在低层大气环境中会给模拟结果带来较大误差. 本文建立了高功率微波强电场作用下O-离子解吸附碰撞过程物理模型, 基于传统的空碰撞模型, 提出了改进的蒙特卡罗仿真方法, 编写了三维仿真程序, 对高功率微波作用下O-离子的解吸附过程进行了仿真, 分析了O-离子平均能量随时间的变化过程以及O-离子与空气分子的碰撞过程, 得到了不同压强、场强、频率和击穿体积条件下种子电子平均产生时间. 理论与仿真结果表明, 随着频率增大, 种子电子平均产生时间变大, 随着击穿体积、场强以及压强增大, 种子电子平均产生时间变小. 最后, 考虑O-离子与空气分子解吸附碰撞提供种子电子条件下, 给出了大气击穿时间理论与实验对比结果, 发现高功率微波频率较低时, 该种子电子产生机理可以解释实验结果, 而高功率微波频率较高时, 该机理下种子电子平均产生时间过长而与实验数据不符. 相似文献