首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single line queue with repeated demands   总被引:2,自引:0,他引:2  
We analyze a model of a queueing system in which customers can only call in to request service: if the server is free, the customer enters service immediately, but if the service system is occupied, the unsatisfied customer must break contact and reinitiate his request later. Such a customer is said to be in “orbit”. In this paper we consider three models characterized by the discipline governing the order of re-request of service from orbit. First, all customers in orbit can reapply, but are discouraged and reduce their rate of demand as more customers join the orbit. Secondly, the FCFS discipline operates for the unsatisfied customers in orbit. Finally, the LCFS discipline governs the customers in orbit and the server takes an exponentially distributed vacation after each service is completed. We calculate several characteristics quantities of such systems, assuming a general service-time distribution and different exponential distributions for the times between arrivals of first and repeat requests.  相似文献   

2.
This paper investigates a batch arrival retrial queue with general retrial times, where the server is subject to starting failures and provides two phases of heterogeneous service to all customers under Bernoulli vacation schedules. Any arriving batch finding the server busy, breakdown or on vacation enters an orbit. Otherwise one customer from the arriving batch enters a service immediately while the rest join the orbit. After the completion of two phases of service, the server either goes for a vacation with probability p or may wait for serving the next customer with probability (1 − p). We construct the mathematical model and derive the steady-state distribution of the server state and the number of customers in the system/orbit. Such a model has potential application in transfer model of e-mail system.  相似文献   

3.
Single server retrial queueing models in which customers arrive according to a batch Poisson process are considered here. An arriving batch, finding the server busy, enters an orbit. Otherwise, one customer from the arriving batch enters for service immediately while the rest join the orbit. The customers from the orbit (the orbital customers) try to reach the server subsequently with the inter-retrial times exponentially distributed. Additionally, at each service completion epoch, two different search mechanisms, that is, type I and type II search, to bring the orbital customers by the system to service, are switched on. Thus, when the server is idle, a competition takes place among primary customers, customers who come by retrial and by two types of searches. The type I search selects a single customer whereas the type II search considers a batch of customers from the orbit. Depending on the maximum size of the batch being considered for service by a type II search, two cases are addressed here. In the first case, no restriction on batch size is assumed, whereas in the second case, maximum size of the batch is restricted to a pre-assigned value. We call the resulting models as model 1 and model 2 respectively. In all service modes other than type II search, only a single customer is qualified for service. Service times of the four types of customers, namely, primary, repeated, and those who come by two types of searches are arbitrarily distributed (with different distributions which are independent of each other). Steady state analysis is performed and stability conditions are established. A control problem for model 2 is considered and numerical illustrations are provided.  相似文献   

4.
We consider a single server retrial queuing model in which customers arrive according to a batch Markovian arrival process. Any arriving batch finding the server busy enters into an orbit. Otherwise one customer from the arriving batch enters into service immediately while the rest join the orbit. The customers from the orbit try to reach the service later and the inter-retrial times are exponentially distributed with intensity depending (generally speaking) on the number of customers on the orbit. Additionally, the search mechanism can be switched-on at the service completion epoch with a known probability (probably depending on the number of customers on the orbit). The duration of the search is random and also probably depending on the number of customers in the orbit. The customer, which is found as the result of the search, enters the service immediately if the server is still idle. Assuming that the service times of the primary and repeated customers are generally distributed (with possibly different distributions), we perform the steady state analysis of the queueing model.  相似文献   

5.
A retrial queue accepting two types of positive customers and negative arrivals, mixed priorities, unreliable server and multiple vacations is considered. In case of blocking the first type customers can be queued whereas the second type customers leave the system and try their luck again after a random time period. When a first type customer arrives during the service of a second type customer, he either pushes the customer in service in orbit (preemptive) or he joins the queue waiting to be served (non-preemptive). Moreover negative arrivals eliminate the customer in service and cause server’s abnormal breakdown, while in addition normal breakdowns may also occur. In both cases the server is sent immediately for repair. When, upon a service or repair completion, the server finds no first type customers waiting in queue remains idle and activates a timer. If timer expires before an arrival of a positive customer the server departs for multiple vacations. For such a system the stability conditions and the system state probabilities are investigated both in a transient and in a steady state. A stochastic decomposition result is also presented. Interesting applications are also discussed. Numerical results are finally obtained and used to investigate system performance.  相似文献   

6.
本文研究服务台不可靠的M/M/1常数率重试排队系统中顾客的均衡进队策略, 其中服务台在正常工作和空闲状态下以不同的速率发生故障。在该系统中, 服务台前没有等待空间, 如果到达的顾客发现服务台处于空闲状态, 该顾客可占用服务台开始服务。否则, 如果服务台处于忙碌状态, 顾客可以选择留下信息, 使得服务台在空闲时可以按顺序在重试空间中寻找之前留下信息的顾客进行服务。当服务台发生故障时, 正在被服务的顾客会发生丢失, 且系统拒绝新的顾客进入系统。根据系统提供给顾客的不同程度的信息, 研究队长可见和不可见两种信息情形下系统的稳态指标, 以及顾客基于收入-支出函数的均衡进队策略, 并建立单位时间内服务商的收益和社会福利函数。比较发现, 披露队长信息不一定能提高服务商收益和社会福利。  相似文献   

7.
We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.  相似文献   

8.
有Bernoulli休假和可选服务的M/G/1重试反馈排队模型   总被引:1,自引:0,他引:1  
考虑具有可选服务的M/G/1重试反馈排队模型,其中服务台有Bernoulli休假策略.系统外新到达的顾客服从参数为λ的泊松过程.重试区域只允许队首顾客重试,重试时间服从一般分布.所有的顾客都必须接受必选服务,然而只有其中部分接受可选服务.每个顾客每次被服务完成后可以离开系统或者返回到重试区域.服务台完成一次服务以后,可以休假也可以继续为顾客服务.通过嵌入马尔可夫链法证明了系统稳态的充要条件.利用补充变量的方法得到了稳态时系统和重试区域中队长分布.我们还得到了重试期间服务台处于空闲的概率,重试区域为空的概率以及其他各种指标.并证出在系统中服务员休假和服务台空闲的时间定义为广义休假情况下也具有随机分解特征.  相似文献   

9.
讨论了有Bernoulli休假策略和可选服务的离散时间Geo/G/1重试排队系统.假定一旦顾客发现服务台忙或在休假就进入重试区域,重试时间服从几何分布.顾客在进行第一阶段服务结束后可以离开系统或进一步要求可选服务.服务台在每次服务完毕后,可以进行休假,或者等待服务下一个顾客.还研究了在此模型下的马尔可夫链,并计算了在稳态条件下的系统的各种性能指标以及给出一些特例和系统的随机分解.  相似文献   

10.
We study a single server queue with batch arrivals and general (arbitrary) service time distribution. The server provides service to customers, one by one, on a first come, first served basis. Just after completion of his service, a customer may leave the system or may opt to repeat his service, in which case this customer rejoins the queue. Further, just after completion of a customer's service the server may take a vacation of random length or may opt to continue staying in the system to serve the next customer. We obtain steady state results in explicit and closed form in terms of the probability generating functions for the number of customers in the queue, the average number of customers and the average waiting time in the queue. Some special cases of interest are discussed and some known results have been derived. A numerical illustration is provided.  相似文献   

11.
本文考虑了具有破坏性和非破坏性服务中断的离散重试排队系统.两类中断都发生在顾客接受服务的过程中,假设服务台在工作时发生破坏性中断,则正在接受服务的顾客中断服务,进入到重试空间中去,重新尝试以接受服务;若服务台在工作时发生非破坏性中断,则正在接受服务的顾客将等待中断结束后再继续完成剩余的服务量.求出了系统存在稳态的充分必要条件.利用补充变量法,求出了系统稳态时系统和重试区域中队长分布的概率母函数,以及其他一些重要的排队指标,并且给出了对应的连续时间下具有两类服务中断的M/G/1排队的队长分布的概率母函数.最后,通过数值算例研究了各种参数对平均队长的影响.  相似文献   

12.
《随机分析与应用》2013,31(5):1009-1019
Abstract

We consider a two‐phase queueing system with server vacations and Bernoulli feedback. Customers arrive at the system according to a Poisson process and receive batch service in the first phase followed by individual services in the second phase. Each customer who completes the individual service returns to the tail of the second phase service queue with probability 1 ? σ. If the system becomes empty at the moment of the completion of the second phase services, the server takes vacations until he finds customers. This type of queueing problem can be easily found in computer and telecommunication systems. By deriving a relationship between the generating functions for the system size at various embedded epochs, we obtain the system size distribution at an arbitrary time. The exhaustive and gated cases for the batch service are considered.  相似文献   

13.
王晓春  朱翼隽  陈燕 《运筹与管理》2006,15(6):54-59,77
本文考虑了一个具有可选服务、反馈的M/G/1重试排队系统。在假定重试区域中只有队首的顾客允许重试的情况下,重试时间具有一般分布时,得到了系统稳态的充分必要条件。求得稳态时系统队长和重试区域中队长分布及相关指标。  相似文献   

14.
This paper presents a multiserver retrial queueing system with servers kept apart, thereby rendering it impossible for one to know the status (idle/busy) of the others. Customers proceeding to one channel will have to go to orbit if the server in it is busy and retry after some time to some channel, not necessarily the one already tried. Each orbital customer, independently of others, chooses the server randomly according to some specified probability distribution. Further this distribution is identical for all customers. We assume that the same ‘orbit’ is used by all retrial customers, between repeated attempts, to access the servers. We derive the system state probability distribution under Poisson arrival process of external customers, exponentially distributed service times and linear retrial rates to access the servers. Several system state characteristics are obtained and numerical illustrations provided. AMS subject classification: Primary 60K25 60K20  相似文献   

15.
The intuition while observing the economy of queueing systems, is that one’s motivation to join the system, decreases with its level of congestion. Here we present a queueing model where sometimes the opposite is the case. The point of departure is the standard first-come first-served single server queue with Poisson arrivals. Customers commence service immediately if upon their arrival the server is idle. Otherwise, they are informed if the queue is empty or not. Then, they have to decide whether to join or not. We assume that the customers are homogeneous and when they consider whether to join or not, they assess their queueing costs against their reward due to service completion. As the whereabouts of customers interact, we look for the (possibly mixed) join/do not join Nash equilibrium strategy, a strategy that if adopted by all, then under the resulting steady-state conditions, no one has any incentive not to follow it oneself. We show that when the queue is empty then depending on the service distribution, both ‘avoid the crowd’ (ATC) and ‘follow the crowd’ (FTC) scenarios (as well as none-of-the-above) are possible. When the queue is not empty, the situation is always that of ATC. Also, we show that under Nash equilibrium it is possible (depending on the service distribution) that the joining probability when the queue is empty is smaller than it is when the queue is not empty. This research was supported by The Israel Science Foundation Grant No. 237/02.  相似文献   

16.
In this paper we consider a single server retrial queue where the server is subject to breakdowns and repairs. New customers arrive at the service station according to a Poisson process and demand i.i.d. service times. If the server is idle, the incoming customer starts getting served immediately. If the server is busy, the incoming customer conducts a retrial after an exponential amount of time. The retrial customers behave independently of each other. The server stays up for an exponential time and then fails. Repair times have a general distribution. The failure/repair behavior when the server is idle is different from when it is busy. Two different models are considered. In model I, the failed server cannot be occupied and the customer whose service is interrupted has to either leave the system or rejoin the retrial group. In model II, the customer whose service is interrupted by a failure stays at the server and restarts the service when repair is completed. Model II can be handled as a special case of model I. For model I, we derive the stability condition and study the limiting behavior of the system by using the tools of Markov regenerative processes.Visiting from Department of Applied Mathematics, Korea Advanced Institute of Science and Technology, Cheongryang, Seoul, Korea.  相似文献   

17.
A single server queue with Poisson arrivals and exponential service times is studied. The system suffers disastrous breakdowns at an exponential rate, resulting in the loss of all running and waiting customers. When the system is down, it undergoes a repair mechanism where the repair time follows an exponential distribution. During the repair time any new arrival is allowed to join the system, but the customers become impatient when the server is not available for a long time. In essence, each customer, upon arrival, activates an individual timer, which again follows an exponential distribution with parameter ξ. If the system is not repaired before the customer’s timer expires, the customer abandons the queue and never returns. The time-dependent system size probabilities are presented using generating functions and continued fractions.  相似文献   

18.
Consider a queueing system where customers arrive at a circle according to a homogeneous Poisson process. After choosing their positions on the circle, according to a uniform distribution, they wait for a single server who travels on the circle. The server's movement is modelled by a Brownian motion with drift. Whenever the server encounters a customer, he stops and serves this customer. The service times are independent, but arbitrarily distributed. The model generalizes the continuous cyclic polling system (the diffusion coefficient of the Brownian motion is zero in this case) and can be interpreted as a continuous version of a Markov polling system. Using Tweedie's lemma for positive recurrence of Markov chains with general state space, we show that the system is stable if and only if the traffic intensity is less than one. Moreover, we derive a stochastic decomposition result which leads to equilibrium equations for the stationary configuration of customers on the circle. Steady-state performance characteristics are determined, in particular the expected number of customers in the system as seen by a travelling server and at an arbitrary point in time.  相似文献   

19.
This paper concerns a discrete-time Geo/Geo/1 retrial queue with both positive and negative customers where the server is subject to breakdowns and repairs due to negative arrivals. The arrival of a negative customer causes one positive customer to be killed if any is present, and simultaneously breaks the server down. The server is sent to repair immediately and after repair it is as good as new. The negative customer also causes the server breakdown if the server is found idle, but has no effect on the system if the server is under repair. We analyze the Markov chain underlying the queueing system and obtain its ergodicity condition. The generating function of the number of customers in the orbit and in the system are also obtained, along with the marginal distributions of the orbit size when the server is idle, busy or down. Finally, we present some numerical examples to illustrate the influence of the parameters on several performance characteristics of the system.  相似文献   

20.
考虑一个具有到达损失、可选服务、反馈的M/G/1重试排队系统.在假定重试区域中顾客具有相互独立的指数重试时间的情况下,得到了系统的转移概率矩阵和系统稳态的充分必要条件.列出微分方程,求得稳态时系统队长和重试区域中队长分布及相关指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号