首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we are dealing with minimum cost flow problem on dynamic network flows with zero transit times and a new arc capacity, horizon capacity, which denotes an upper bound on the total flow traversing through on an arc during a pre-specified time horizon T. We develop a simple approach based on mathematical modelling attributes to solve the min-cost dynamic network flow problem where arc capacities and costs are time varying, and horizon capacities are considered. The basis of the method is simple and relies on the appropriate defining of polyhedrons, and in contrast to the other usual algorithms that use the notion of time expanded network, this method runs directly on the original network.  相似文献   

2.
For the earliest arrival flow problem one is given a network G=(V,A) with capacities u(a) and transit times τ(a) on its arcs aA, together with a source and a sink vertex s,tV. The objective is to send flow from s to t that moves through the network over time, such that for each time θ∈[0,T) the maximum possible amount of flow up to this time reaches t. If, for each θ∈[0,T), this flow is a maximum flow for time horizon θ, then it is called earliest arrival flow. In practical applications a higher congestion of an arc in the network often implies a considerable increase in transit time. Therefore, in this paper we study the earliest arrival problem for the case that the transit time of each arc in the network at each time θ depends on the flow on this particular arc at that time θ.For constant transit times it has been shown by Gale that earliest arrival flows exist for any network. We give examples, showing that this is no longer true for flow-dependent transit times. For that reason we define a relaxed version of this problem where the objective is to find flows that are almost earliest arrival flows. In particular, we are interested in flows that, for each θ∈[0,T), need only α-times longer to send the maximum flow to the sink. We give both constant lower and upper bounds on α; furthermore, we present a constant factor approximation algorithm for this problem.  相似文献   

3.
The optimization models and algorithms with their implementations on flow over time problems have been an emerging field of research because of largely increasing human-created and natural disasters worldwide. For an optimal use of transportation network to shift affected people and normalize the disastrous situation as quickly and Efficiently as possible, contraflow configuration is one of the highly applicable operations research (OR) models. It increases the outbound road capacities by reversing the direction of arcs towards the safe destinations that not only minimize the congestion and increase the flow but also decrease the evacuation time significantly. In this paper, we sketch the state of quickest flow solutions and solve the quickest contraflow problem with constant transit times on arcs proving that the problem can be solved in strongly polynomial time O(nm2(log n)2), where n and m are number of nodes and number of arcs, respectively in the network. This contraflow solution has the same computational time bound as that of the best min-cost flow solution. Moreover, we also introduce the contraflow approach with load dependent transit times on arcs and present an Efficient algorithm to solve the quickest contraflow problem approximately. Supporting the claim, our computational experiments on Kathmandu road network and on randomly generated instances perform very well matching the theoretical results. For sufficiently large number of evacuees, about double flow can be shifted with the same evacuation time and about half time is sufficient to push the given flow value with contraflow reconfiguration.  相似文献   

4.
This paper extends the authors' parallel nested dissection algorithm of [13] originally devised for solving sparse linear systems. We present a class of new applications of the nested dissection method, this time to path algebra computations (in both cases of single source and all pair paths), where the path algebra problem is defined by a symmetric matrix A whose associated graph G with n vertices is planar. We substantially improve the known algorithms for path algebra problems of that general class; this has further applications to maximum flow and minimum cut problems in an undirected planar network and to the feasibility testing of a multicommodity flow in a planar network.  相似文献   

5.
In this paper, we study a class of fractional-order cellular neural network containing delay. We prove the existence and uniqueness of the equilibrium solution followed by boundedness. Based on the theory of fractional calculus, we approximate the solution of the corresponding neural network model over the interval \([0,\infty )\) using discretization method with piecewise constant arguments and variation of constants formula for fractional differential equations. Furthermore, we conclude that the solution of the fractional-delayed system can be approximated for large t by the solution of the equation with piecewise constant arguments, if the corresponding linear system is exponentially stable. At the end, we give two numerical examples to validate our theoretical findings.  相似文献   

6.
We approximate the objective function of the fixed charge network flow problem (FCNF) by a piecewise linear one, and construct a concave piecewise linear network flow problem (CPLNF). A proper choice of parameters in the CPLNF problem guarantees the equivalence between those two problems. We propose a heuristic algorithm for solving the FCNF problem, which requires solving a sequence of CPLNF problems. The algorithm employs the dynamic cost updating procedure (DCUP) to find a solution to the CPLNF problems. Preliminary numerical experiments show the effectiveness of the proposed algorithm. In particular, it provides a better solution than the dynamic slope scaling procedure in less CPU time. Research was partially supported by NSF and Air Force grants.  相似文献   

7.
This paper is concerned with the best piecewise constant approximation of a function f of single variable. Polynomial time algorithms are derived by using shortest path and dynamic programming techniques. Several applications of this class of problems will be briefly touched upon.  相似文献   

8.
In this paper we consider the online ftp problem. The goal is to service a sequence of file transfer requests given bandwidth constraints of the underlying communication network. The main result of the paper is a technique that leads to algorithms that optimize several natural metrics, such as max-stretch, total flow time, max flow time, and total completion time. In particular, we show how to achieve optimum total flow time and optimum max-stretch if we increase the capacity of the underlying network by a logarithmic factor. We show that the resource augmentation is necessary by proving polynomial lower bounds on the max-stretch and total flow time for the case where online and offline algorithms are using same-capacity edges. Moreover, we also give polylogarithmic lower bounds on the resource augmentation factor necessary in order to keep the total flow time and max-stretch within a constant factor of optimum.  相似文献   

9.
Dynamic network flow models describe network-structured, decision-making problems over time. They are of interest because of their numerous applications and intriguing dynamic structure. The dynamic models are specially structured problems that can be solved with known general methods. However, specialized techniques have been developed to exploit the underlying dynamic structure. Here, we present a state-of-the-art survey of the results, applications, algorithms and implementations for dynamic network flows.Presented at the XII International Symposium on Mathematical Programming, Cambridge, Massachusetts, August 1985.Prepared under National Science Foundation Grant ECS-8307549. Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.  相似文献   

10.
We consider the problem of scheduling a sequence of packets over a linear network, where every packet has a source and a target, as well as a release time and a deadline by which it must arrive at its target. The model we consider is bufferless, where packets are not allowed to be buffered in nodes along their paths other than at their source. This model applies to optical networks where opto-electronic conversion is costly, and packets mostly travel through bufferless hops. The offline version of this problem was previously studied in M. Adler et al. (2002) [3]. In this paper we study the online version of the problem, where we are required to schedule the packets without knowledge of future packet arrivals. We use competitive analysis to evaluate the performance of our algorithms. We present the first online algorithms for several versions of the problem. For the problem of throughput maximization, where all packets have uniform weights, we give an algorithm with a logarithmic competitive ratio, and present some lower bounds. For other weight functions, we show algorithms that achieve optimal competitive ratios.  相似文献   

11.
In this paper, we consider k-echelon extensions of the deterministic one warehouse multi-retailer problem. We give constant factor approximation algorithms for some of these extensions when k is fixed. We focus first on the case without backorders and we give a \((2k-1)\)-approximation algorithm under general assumptions on the evolution of the holding costs as products move toward the final customers. We then improve this result to a k-approximation when the holding costs are monotonically non-increasing or non-decreasing (which is a natural situation in practice). Finally we address problems with backorders: we give a 3-approximation for the one-warehouse multi-retailer problem with backlog and a k-approximation algorithm for the k-level Joint Replenishment Problem with backlog (a variant where inventory can only be kept at the final retailers). Ours results are the first constant approximation algorithms for those problems. In addition, we demonstrate the potential of our approach on a practical case. Our preliminary experiments show that the average optimality gap is around 15%.  相似文献   

12.
In this paper, we deal with single machine scheduling problems subject to time dependent effects. The main point in our models is that we do not assume a constant processing rate during job processing time. Rather, processing rate changes according to a fixed schedule of activities, such as replacing a human operator by a less skilled operator. The contribution of this paper is threefold. First, we devise a time-dependent piecewise constant processing rate model and show how to compute processing time for a resumable job. Second, we prove that any time-dependent continuous piecewise linear processing time model can be generated by the proposed rate model. Finally, we propose polynomial-time algorithms for some single machine problems with job independent rate function. In these procedures the job-independent rate effect does not imply any restriction on the number of breakpoints for the corresponding continuous piecewise linear processing time model. This is a clear element of novelty with respect to the polynomial-time algorithms proposed in previous contributions for time-dependent scheduling problems.  相似文献   

13.
In this paper, we study the procurement problem faced by a buyer who needs to purchase a variety of goods from suppliers applying a so-called total quantity discount policy. This policy implies that every supplier announces a number of volume intervals and that the volume interval in which the total amount ordered lies determines the discount. Moreover, the discounted prices apply to all goods bought from the supplier, not only to those goods exceeding the volume threshold. We refer to this cost-minimization problem as the total quantity discount (TQD) problem. We give a mathematical formulation for this problem and argue that not only it is NP-hard, but also that there exists no polynomial-time approximation algorithm with a constant ratio (unless P = NP). Apart from the basic form of the TQD problem, we describe four variants. In a first variant, the market share that one or more suppliers can obtain is constrained. Another variant allows the buyer to procure more goods than strictly needed, in order to reach a lower total cost. We also consider a setting where the buyer needs to pay a disposal cost for the extra goods bought. In a third variant, the number of winning suppliers is limited, both in general and per product. Finally, we investigate a multi-period variant, where the buyer not only needs to decide what goods to buy from what supplier, but also when to do this, while considering the inventory costs. We show that the TQD problem and its variants can be solved by solving a series of min-cost flow problems. Finally, we investigate the performance of three exact algorithms (min-cost flow based branch-and-bound, linear programming based branch-and-bound, and branch-and-cut) on randomly generated instances involving 50 suppliers and 100 goods. It turns out that even the large instances of the basic problem are solved to optimality within a limited amount of time. However, we find that different algorithms perform best in terms of computation time for different variants.  相似文献   

14.
In classical scheduling theory job processing times are constant. However, there are many situations where processing time of a job depends on the starting time of the job in the queue. This paper reviews the rapidly growing literature on single machine scheduling models with time dependent processing times. Attention is focused on linear, piecewise linear and non-linear processing time functions for jobs. We survey known results and introduce new solvable cases. Finally, we identify the areas and give directions where further research is needed.  相似文献   

15.
The convex cost network flow problem is to determine the minimum cost flow in a network when cost of flow over each arc is given by a piecewise linear convex function. In this paper, we develop a parametric algorithm for the convex cost network flow problem. We define the concept of optimum basis structure for the convex cost network flow problem. The optimum basis structure is then used to parametrize v, the flow to be transsshipped from source to sink. The resulting algorithm successively augments the flow on the shortest paths from source to sink which are implicitly enumerated by the algorithm. The algorithm is shown to be polynomially bounded. Computational results are presented to demonstrate the efficiency of the algorithm in solving large size problems. We also show how this algorithm can be used to (i) obtain the project cost curve of a CPM network with convex time-cost tradeoff functions; (ii) determine maximum flow in a network with concave gain functions; (iii) determine optimum capacity expansion of a network having convex arc capacity expansion costs.  相似文献   

16.
We consider the integration of two-dimensional, piecewise constant functions with respect to copulas. By drawing a connection to linear assignment problems, we can give optimal upper and lower bounds for such integrals and construct the copulas for which these bounds are attained. Furthermore, we show how our approach can be extended in order to approximate extremal values in very general situations. Finally, we apply our approximation technique to problems in financial mathematics and uniform distribution theory, such as the model-independent pricing of first-to-default swaps.  相似文献   

17.
This paper concerns the problem of finding shortest paths from one node to all other nodes in networks for which arc costs can vary with time, each arc has a transit time, and parking with a corresponding time-varying cost is allowed at the nodes. The transit times can also take negative values. A general labeling method, as well as several implementations, are presented for finding shortest paths and detecting negative cycles under the assumption that arc traversal costs are piecewise linear and node parking costs are piecewise constant.  相似文献   

18.
Recent combinatorial algorithms for linear programming can also be applied to certain nonlinear problems. We call these Generalized Linear-Programming, or GLP, problems. We connect this class to a collection of results from combinatorial geometry called Helly-type theorems. We show that there is a Helly-type theorem about the constraint set of every GLP problem. Given a familyH of sets with a Helly-type theorem, we give a paradigm for finding whether the intersection ofH is empty, by formulating the question as a GLP problem. This leads to many applications, including linear expected time algorithms for finding line transversals and mini-max hyperplane fitting. Our applications include GLP problems with the surprising property that the constraints are nonconvex or even disconnected.  相似文献   

19.
This paper surveys the recent developments in the theoretical study of separated continuous linear programs (SCLP). This problem serves as a useful model for various dynamic network problems where storage is permitted at the nodes. We demonstrate this by modelling some hypothetical problems of water distribution, transportation and telecommunications. The theoretical developments we present for SCLP fall into two main topics. The first of these is the existence of optimal solutions of various forms. These results culminate in one guaranteeing the existence of a piecewise analytic optimal solution, that is, having a finite number of breakpoints. The second topic we discuss is duality. Under this heading we develop a theory that closely resembles that for finite-dimensional linear programming. For instance, we define complementary slackness and give conditions under which there exist complementary slack primal and dual optimal solutions. Throughout the paper we observe that the main theorems are sufficiently general to include any reasonable practical problems  相似文献   

20.
We consider the p-center problem on tree graphs where the customers are modeled as continua subtrees. We address unweighted and weighted models as well as distances with and without addends. We prove that a relatively simple modification of Handler’s classical linear time algorithms for unweighted 1- and 2-center problems with respect to point customers, linearly solves the unweighted 1- and 2-center problems with addends of the above subtree customer model. We also develop polynomial time algorithms for the p-center problems based on solving covering problems and searching over special domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号