首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semi-empirically generated potential energy surfaces for NN bond rupture in hydrazine and NH bond rupture in ammonia show that ground-excited singlet state crossings or near crossings occur along certain geometrical pathways while other lower energy pathways exhibit no theoretical vestige of such a crossing. This latter observation is in agreement with experimental evidence indicating that NH2 + NH2 or NH2 + H reactions occur without activation energies. Thus, while orbital or state symmetry arguments are useful qualitative guides as to the possible shape of surfaces along certain symmetry restricted pathways they provide no information for the non-symmetrical ones.  相似文献   

2.
A simple perturbational approach has been used to establish the symmetry conditions for energetically favourable nuclear motions on a potential energy surface. In particular, the operational rules of Orbital Correspondence Analysis in Maximum Symmetry (OCAMS) for specifying the symmetry species of the nuclear displacements, which make a symmetry forbidden pathway symmetry-allowed, have been derived. A general, symmetry-independent, procedure is then proposed for finding the energetically most favourable pathway by referring to the form of the overlap density function of non-correlating orbitals. The method is demonstrated by selecting from among the several symmetry-allowed nuclear motions on the potential energy surface for the H2 + D2 exchange reaction, that which is energetically most favourable.  相似文献   

3.
Predictionofthechemicalreactivityandquantitativecalculationofmolecularreactiondynamicshavebeenaninteresingsubjectintheoreticalchemistry.Inthefiftiesandsixties,basedonthesimplemolecularorbital(MO)approach,thefrontierorbitaltheoryproposedbyFukuietal.[1]and…  相似文献   

4.
Two different viewpoints of possible intersections between potential energy surfaces of the same symmetry for polyatomic systems are considered and extended to the general framework of complex nuclear coordinates. The results of ab initio calculations for complex nuclear coordinates yield a surface of n-1 complex dimensions, where n is the number of nuclear degrees of freedom. This supports the traditional viewpoint that intersections (real or complex) can exist between potential energy surfaces of the same symmetry.  相似文献   

5.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + CH2=C=CH2 reaction were theoretically characterized using the complete basis set model chemistry, CBS-QB3. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. The results predict that the electrophilic O-addition pathways on the central and terminal carbon atom are dominant up to combustion temperatures. Major predicted end-products for the addition routes include CO + C2H4, 3CH2 + H2CCO, and CH2=C*-CHO + H*, in agreement with experimental evidence. CO + C2H4 are mainly generated from the lowest-lying singlet surface after an intersystem crossing process from the initial triplet surface. Efficient H-abstraction pathways are newly identified and occur on two different electronic state surfaces, 3A' and 3A', resulting in OH + propargyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion chemistry and flames, with estimated contributions of ca. 35% at 2000 K. The overall thermal rate coefficient k(O + C3H4) at 200-1000 K was computed using multistate transition state theory: k(T) = 1.60 x 10(-17) x T (2.05) x exp(-90 K/T) cm3 molecule(-1) s(-1), in good agreement with experimental data available for the 300-600 K range.  相似文献   

6.
Potential energy surfaces are computed for the five lowest electronic states of the Al + H2 system in its symmetric nuclear arrangement. Mechanisms of photochemical reactions of Al atoms with H2 molecules are proposed, based on the calculated potential energy surfaces. The insertion reaction of the ground-state Al atom into the H2 molecule is difficult under normal conditions. However, photoexcited Al atoms are capable of reacting with H2 molecules along different pathways. The results obtained are consistent with experimental findings. The potential energy profiles of the dissociation reaction, AlH2 → AlH + H, are traced by employing the UMP2 energy gradient method. Photocexcited Al atoms react with H2 molecules along the 2 2A1 state pathway, and the AlH2(2Σg+) formed dissociates easily into AlH(1Σ) and H(2S). The dissociation reaction of ground-state AlH2 is difficult.  相似文献   

7.
The mechanism of the degenerate 16O/18O exchange in the reactions of FeO+ and FeOH+ with water is examined by density functional theory. Based on previous experimental work (Chem. Eur. J. 1999, 5, 1176), two possible reaction pathways are investigated for both systems. The first mechanism consists of one (for FeOH+ + H20) or two (for FeO+ + H20) 1,3-hydrogen migrations from one oxygen atom to the other; the iron atom is not directly involved in these OH bond activations. The second route comprises a series of two (for FeOH+ + H20) or four (for FeO+ + H20) 1,2-hydrogen migration steps which involve the intermediate formations of metal-hydrogen bonds. Both mechanisms are evaluated under consideration of the respective low- and high spin potential-energy surfaces. The computational results show a clear preference for the 1,3-routes occurring on the respective high-spin surfaces bypassing the intermediacy of high-valent iron compounds having FeH bonds.  相似文献   

8.
9.
Excited-state potential energy surfaces of adenine, protonated adenine, and their N9-methylated analogs are explored by means of a complete active space (CAS) and time-dependent density functional theory (TD-DFT) study to understand the dynamics associated with internal conversion. After photoexcitation of the ground-state molecules to the S(1) state, the nuclear motions that are responsible for taking the wavepacket out of the Franck-Condon region are either an H--N9/C--N9 stretch or a ring-puckering motion that leads to pyramidalization. These motions lead to accessible conical intersections with the ground-state surface. The results are used to successfully interpret previous measurements on the photodissociation of adenosine 5'-monophosphate nucleotide anions and cations, where the latter react in a highly nonstatistical manner.  相似文献   

10.
We made ab initio electronic calculations of the structure and energetics of mixed hypermetalated hydrogen oxides, Li2NaOH and LiNa2OH. There exist five equilibrium geometries for each complex. In all levels of calculation the global minimum structure for Li2NaOH has C2v symmetry and a large distance between sodium and oxygen, 4.24 Å (MP2/6-31G*). The dissociation energies to all possible products were also calculated. Li2NaOH → Na + Li2OH δH = +25.33 kcal/mol (at MP4/6-311++G**//6-31G* + ZPE scaled by 0.9). All other dissociation processes are highly endothermic. Similar procedures were applied to LiNa2OH. The global minimum structure for LiNa2OH belongs to point group Cs. It is also endothermic to all possible dissociation paths. LiNa2OH →Na + LiNaOH δH = +12.72 kcal/mol (at MP4/6-311++G*//6-31G* + ZPE scaled by 0.9). The nuclear repulsion energy is crucial in energetics of the structures. The distribution of electron density and bonding properties for these equilibrium structures were analyzed.  相似文献   

11.
The bending and symmetric stretching potential curves for the low-lying doublet electronic states of the BH2 radical are calculated by means of the configuration interaction method. Special attention is paid to consideration of the interaction between valence and Rydberg-type species. The dissociation of BH2 in its various electronic states into H + B + H is studied. The results of calculations predict a complicated structure of both, the absorption and emission spectra caused by a number of avoided crossings between the excited states of the same symmetry in the geometry region close to the equilibrium geometry of the ground state.  相似文献   

12.
Under ammonia chemical ionization (CI) conditions triarylpropenones undergo hydrogen radical-induced olefinic bond reduction on metal surfaces, resulting in [M + 2H + NH4]+ ions corresponding to the ammonium adduct of the saturated ketone. The decomposition of the adduct ions, [MNH4]+ and [M + 2H + NH4]+, was studied by collision-induced dissociation mass-analysed ion kinetic energy (CID-MIKE) spectroscopy in a reverse geometry instrument. From the CID-MIKE spectra of the [MNH4]+, [M + 2H + NH4]+, [MND4]+ and [M + 2D + ND4]+ ions it is clear that the fragmentation of the adduct ions involves loss of NH3 followed by various cyclization reactions resulting in stable condensed ring systems. Elimination of ArH and ArCHO subsequent to the loss of NH3 and formation of aroyl ion are characteristic decomposition pathways of the [MNH4]+ ions, whereas elimination of ArCH3 and formation of [ArCH2]+ are characteristic of the [M + 2H + NH4]+ ions of these propenones.  相似文献   

13.
14.
15.
The lowest-lying triplet and singlet potential energy surfaces for the O(3P) + C6H6 reaction were theoretically characterized using the "complete basis set" CBS-QB3 model chemistry. The primary product distributions for the multistate multiwell reactions on the individual surfaces were then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. It is newly found that electrophilic O-addition onto a carbon atom in benzene can occur in parallel on two triplet surfaces, 3A' and 3A' '; the results predict O-addition to be dominant up to combustion temperatures. Major expected end-products of the addition routes include phenoxy radical + H*, phenol and/or benzene oxide/oxepin, in agreement with the experimental evidence. While c-C6H5O* + H* are nearly exclusively formed via a spin-conservation mechanism on the lowest-lying triplet surface, phenol and/or benzene oxide/oxepin are mainly generated from the lowest-lying singlet surface after inter-system crossing from the initial triplet surface. CO + c-C5H6 are predicted to be minor products in flame conditions, with a yield < or = 5%. The O + C6H6 --> c-C5H5* + *CHO channel is found to be unimportant under all relevant combustion conditions, in contrast with previous theoretical conclusions (J. Phys. Chem. A 2001, 105, 4316). Efficient H-abstraction pathways are newly identified, occurring on two different electronic state surfaces, 3B1 and 3B2, resulting in hydroxyl plus phenyl radicals; they are predicted to play an important role at higher temperatures in hydrocarbon combustion, with estimated contributions of ca. 50% at 2000 K. The overall thermal rate coefficient k(O + C6H6) at 300-800 K was computed using multistate transition state theory: k(T) = 3.7 x 10-16 x T 1.66 x exp(-1830 K/T) cm(3) molecule(-1) s(-1), in good agreement with the experimental data available.  相似文献   

16.
Single-Crystal Raman Spectra of Alums. II. Raman-active Lattice Vibrations and F.I.R. Spectra FIR and single crystal Raman spectra of seven different alums have been measured. All observed peaks are assigned to the symmetry species of the factor group Th. A part of the lattice modes could be assigned to translational and rotational motions of the sulfate (selenate) sublattice and to motions of the crystal water – [MeI(H2O)6]+ and [MeIII(H2O)6]3+ respectively. Comparison of spectra taken at 295 K and 80 K shows no frequency shifts significant for phase transition but a remarkable sharpening of especially those bands which are connected with water motions.  相似文献   

17.
The electronic and nuclear structures of a series of [Cu(2,9-(X)2-phen)2]+ copper(I) complexes (phen=1,10-phenanthroline; X=H, F, Cl, Br, I, Me, CN) in their ground and excited states are investigated by means of density functional theory (DFT) and time-dependent (TD-DFT) methods. Subsequent Born-Oppenheimer molecular dynamics is used for exploring the T1 potential energy surface (PES). The T1 and S1 energy profiles, which connect the degenerate minima induced by ligand flattening and Cu−N bond symmetry breaking when exciting the molecule are calculated as well as transition state (TS) structures and related energy barriers. Three nuclear motions drive the photophysics, namely the coordination sphere asymmetric breathing, the well-documented pseudo Jahn-Teller (PJT) distortion and the bending of the phen ligands. This theoretical study reveals the limit of the static picture based on potential energy surfaces minima and transition states for interpreting the luminescent and TADF properties of this class of molecules. Whereas minor asymmetric Cu−N bonds breathing accompanies the metal-to-ligand-charge-transfer re-localization over one or the other phen ligand, the three nuclear movements participate to the flattening of the electronically excited complexes. This leads to negligible energy barriers whatever the ligand X for the first process and significant ligand dependent energy barriers for the formation of the flattened conformers. Born-Oppenheimer (BO) dynamics simulation of the structural evolution on the T1 PES over 11 ps at 300 K confirms the fast backwards and forwards motion of the phenanthroline within 200–300 fs period and corroborates the presence of metastable C2 structures.  相似文献   

18.
A theoretical investigation of the H2O + HCNO reaction, which is carried out by means of CCSD(T)/6‐311G(d,p)//B3LYP/6‐311G(d,p)+ZPVE computational method to determine a set of reasonable pathways, there are seven product pathways, P i with i = 1 , 2 , …, 7 are involved. It is shown that P 1 (H2O + NCOH), P 2 (CO + NH2 + OH), P 4 (HCN + HO2 + H), and P 6 (CO + NH2OH) are the major product channels; and P 7 (HOC + H2 + NO) is the minor product channels, whereas the other channels for P 3 (HNO + HCOH) and P 5 (HNO + H2CO) are very minor, the minor product channels. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
A new 1D-to-3D transformation scheme for product state distributions applicable to light+heavy-heavy reactions is developed making use of specific dynamical and kinematical properties of such reactions. For the H(D) + F2 and H(D) + Cl2 reactions, its results are in full accord with 3D trajectory calculations obtained on the same potential surfaces that were used to generate the input to the 1D-to-3D transformation.  相似文献   

20.
The longitudinal 13C spin relaxation times T1 and the 13C{1H} nuclear Overhauser enhancement were measured in a concentrated aqueous solution of the basic pancreatic trypsin inhibitor. The correlation time for overall rotational motions of the basic pancreatic trypsin inhibitor molecules was found to be τR ≈ 2 × 10?8 s. In connection with previous 1H n.m.r. studies of intramolecular motions of the aromatics, we were particularly interested in the correlation times τG for intramolecular segmental motions of the aromatic rings. The present experiments revealed no manifestation of intramolecular motions of the aromatics, indicating that τG ? 2 × 10?8 s for the aromatic ring carbon atoms. On the other hand, rapid segmental motions were evidenced for the peripheral carbon atoms of aliphatic amino acid sidechains. Comparison of the 1H and 13C n.m.r. data on the basic pancreatic trypsin inhibitor indicates that the time scale of high resolution 1H n.m.r. at high fields may in many instances be more appropriate for studies of the molecular dynamics in globular proteins than the time scale of spin relaxation measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号