首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lo KK  Lee TK 《Inorganic chemistry》2004,43(17):5275-5282
Two luminescent ruthenium(II) polypyridine complexes containing a biotin moiety [Ru(bpy)(2)(L1)](PF(6))(2) (1) and [Ru(bpy)(2)(L2)](PF(6))(2) (2) (bpy = 2,2'-bipyridine; L1 = 4-(N-((2-biotinamido)ethyl)amido)-4'-methyl-2,2'-bipyridine; L2 = 4-(N-((6-biotinamido)hexyl)amido)-4'-methyl-2,2'-bipyridine) have been synthesized and characterized, and their photophysical and electrochemical properties have been studied. Upon photoexcitation, complexes 1 and 2 display intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ru) --> pi*(L1 or L2)) emission in fluid solutions at 298 K and in low-temperature glass. We have studied the binding of these ruthenium(II) biotin complexes to avidin by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, competitive assays using native biotin, and quenching experiments using methyl viologen. On the basis of the results of these experiments, a homogeneous competitive assay for biotin has been investigated.  相似文献   

2.
The syntheses, structural features, electrochemical behavior, absorption spectra, and photophysical properties of five mononuclear complexes [(terpy)Ru(terpy-DEDBT(n)-terpy)](2+), RuT(n), and five binuclear complexes [(terpy)Ru(terpy-DEDBT(n)-terpy)Ru(terpy)](4+), RuT(n)Ru, are reported, where n varies from 1 to 5 so that the metal-metal distance is estimated to be 42 A for the largest binuclear complex, RuT(5)Ru (terpy is 2,2':6',2"-terpyridine and DEDBT is 2,5-diethynyl-3,4-dibutylthiophene). The metal-centered oxidation potentials for the mononuclear and binuclear species are slightly more positive than for the reference [Ru(terpy)(2)](2+) complex, owing to the withdrawing nature of the back-to-back terpyridine ligands incorporating the repeat diethynyl-thiophene units. Comparison of the reduction potentials for the mononuclear and binuclear complexes reveals that the reduction steps are localized either at the terpy fragments of the T(n) ligands or at the terpy peripheral ligands. The spectroscopic results (absorption spectra at room temperature, luminescence spectra and lifetimes at room temperature and at 77 K) in acetonitrile solvent are consistent with the establishment of electronic delocalization within the oligomeric diethynyl-thiophene fragments (DEDBT(n)) of the T(n) ligands; however, the results also indicate that the terpy units of these ligands and the DEDBT(n)fragments are not strongly coupled. Both at room temperature and at 77 K, the (3)metal-to-ligand charge-transfer luminescence of RuT(n) and RuT(n)Ru complexes is strongly depressed in the larger species with respect to what happens for n < or = 2 (where the luminescence quantum yield is phi approximately 10(-4)); this is discussed in terms of the possible intervention of triplet levels localized at the oligothiophene DEDBT(n)(fragments.  相似文献   

3.
Reaction of [(eta(5)-Me4EtC5)Fe(II)Cl(tmeda)] (tmeda = N,N,N'N'-tetramethylethylenediamine) with a polyanion solution of decacyclene (1) results in the formation of the triple-deckers [{(eta(5)-Me4EtC5)Fe}2-mu2-(eta(6):eta(6)-decacyclene)] (3) and [{(eta(5)-Me4EtC5)Fe}4-mu4-(eta(6):eta(6):eta(6):eta(6)-decacyclene)] (4). Metal complexation in 3 and 4 occurs on opposite faces of the pi perimeter in an alternating mode. The decacyclene ring adopts a gently twisted molecular propeller geometry with twofold crystallographic symmetry (C2). Complex 4 crystallizes in the chiral space group C222(1); the investigated crystal only contains decacyclene rings with M chirality. The handedness can be assigned unambiguously to the presence of the iron atoms. Cyclovoltammetric studies revealed quasireversible behavior of the redox events and a strong interaction of the Fe atoms in 3 and 4, exemplified by potential differences deltaE of 660 and 770(780) mV between the first and the second individual oxidation processes. This corresponds to a high degree of metal-metal interaction for 3 and 4. The successful syntheses of 3 and 4 together with earlier results from our laboratory proves that all five- and six-membered pi subunit sets of 1 are prone to metal complexation. A clear site preference in 1 towards the complexation of [Cp(R)]iron, -cobalt, and -nickel fragments exists.  相似文献   

4.
Xien Liu  Jingxi Pan  Licheng Sun 《Tetrahedron》2007,63(37):9195-9205
Two ruthenium tris-bipyridine functionalized porphyrins 4, 8 and their Zn derivatives 4-Zn, 8-Zn were designed, synthesized, and characterized. The redox potentials of these complexes as well as their corresponding monomeric reference porphyrin and ruthenium bipyridine complexes were also measured for comparison. Primary dynamic studies on the electron injection and backing recombination between these complexes and TiO2 nanoparticles were carried out by means of transient absorption spectroscopy. The results indicate that a long-lived charge separation state was obtained in these assemblies.  相似文献   

5.
In this contribution, we report the synthesis, the chemical and photophysical characterization, and the study of the reactivity toward electrophiles of two mononuclear complexes of the type [Ru(bpy)2L]+ (bpy is 2,2'-bipyridyl), in which L is represented by the deprotonated form of 2-(1,H-tetrazol-5-yl)pyridine (L1) or 2-(1,H-tetrazol-5-yl)pyrazine (L2). The 1H and 13C NMR experiments that were performed on complexes RuL1 and RuL2 allowed us to establish that the tetrazolate moiety is bonded to the metal center via the N-1 nitrogen, while the coplanar arrangement adopted by the coordinated ligand upon coordination and the consequent interannular conjugation effect accounts for the unexpectedly low field resonance of the tetrazole carbon. The 13C NMR spectroscopy is also of fundamental importance to determine the chemo- and regioselectivity of the addition of a methyl group to RuL1 and RuL2, which takes place at the N-3 nitrogen of the five-membered ring. All these features were confirmed by the X-ray diffraction structures of RuL1 and of the methylated compounds RuL1Me and RuL2Me. Relative to these latter complexes, the presence of a methyl moiety does not cause any distortion from coplanarity of the coordinated tetrazolates. The redox properties of the complexes were investigated by cyclic voltammetry and indicated a quite different behavior between the pyrazinyl-tetrazolate and the pyridyl-tetrazolate complexes as the consequence of the higher electron-withdrawing character of the pyrazine ring. The study of the photophysical properties of the complexes also shows a significant diversity between the luminescent RuL1 and the rather poorly emissive RuL2. Interestingly, the methylated compounds RuL1Me and RuL2Me display radiative excited-state decays with longer lifetimes than their precursors; this feature indicates that methylation is a useful reaction for the tuning of the light emission performances of similar tetrazolate complexes. The synthesis and the characterization of a novel dinuclear complex of type [(bpy)2Ru-L3-Ru(bpy)2]2+, Ru(L3)Ru, where L3 is the bis-anion derived from bis-2,3-(1,H-tetrazol-5-yl)pyrazine, is also reported.  相似文献   

6.
《Mendeleev Communications》2020,30(1):100-102
  1. Download : Download high-res image (105KB)
  2. Download : Download full-size image
  相似文献   

7.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

8.
9.
Li X  Chen Z  Zhao Q  Shen L  Li F  Yi T  Cao Y  Huang C 《Inorganic chemistry》2007,46(14):5518-5527
A simple synthetic route was developed for nonconjugated dendritic iridium(III) complex based on tunable pyridine-based ligands. From an intermediate 2-bromopyridyl-4-methanol, three series of polybenzyloxy dendritic pyridine-based ligands with 2-phenyl, 2-benzothienyl, and 2,4-difluorophenyl subsitituents were easily synthesized via two-step reactions (Suzuki reaction and etherifying reaction). Using these pyridine derivatives as the CwedgeN ligands, these dendritic iridium(III) complexes exhibiting tunable photoluminescence from blue to red were obtained. The photoluminescence quantum yields of these dendritic complexes in neat films increased with the increasing generation number of dendritic CwedgeN ligands. Importantly, these iridium complexes were used as dopants for successfully fabricating polymer-based electrophosphorescent light-emitting diodes (PLEDs) with the highest external quantum efficiency of 12.8%.  相似文献   

10.
The six multichromophoric species 1-6, containing the potentially luminescent Ru(II) polypyridine subunits and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene fluorophores (dipyrromethene-BF(2) dyes, herein after called bodipy), have been prepared and their absorption spectra, luminescence properties (both at room temperature in fluid solution and at 77 K in rigid matrix), and redox properties have been investigated (for the structuralformulas of all the compounds, see Figure 1). For comparison purposes, also the same properties of the bodipy-based free ligands have been examined. Three of the multichromophoric species (1-3) are based on the Ru(bpy)(3)-type metal subunit, whereas 4-6 are based on the Ru(terpy)(2)-type metal subunit. Transient absorption spectroscopy at room temperature of all the compounds has also been performed. The absorption spectra of all the metal complexes show features that can be assigned to the Ru(II) polypyridine subunits and to the bodipy centers. In particular, the lowest energy spin-allowed pi-pi* transition of the bodipy groups dominates the visible region, peaking at about 530 nm. All the new complexes exhibit a rich redox behavior, with reversible processes attributed to specific sites, indicating a small perturbation of each redox center and therefore highlighting the supramolecular nature of the multichromophoric assemblies. Despite the good luminescence properties of the separated components, 1-6 do not exhibit any luminescence at room temperature; however, transient absorption spectroscopy evidences that for all of them a long-lived (microsecond time scale) excited state is formed, which is identified as the bodipy-based triplet state. Pump-probe transient absorption spectroscopy suggests that such a triplet state is formed from the promptly prepared bodipy-based (1)pi-pi* state in most cases by the intervention of a charge-separated level. At 77 K, all the complexes except complex 1 exhibit the bodipy-based fluorescence, although with a slightly shortened lifetime compared to the corresponding free ligand(s), and 4-6 also exhibit a phosphorescence assigned to the bodipy subunits. Phosphorescence of bodipy species had never been reported in the literature to the best of our knowledge: in the present cases we propose that it is an effective decay process thanks to the presence of the ruthenium heavy atom and of the closely lying (3)MLCT state of the Ru(terpy)(2)-type subunits.  相似文献   

11.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

12.
Bistridentate metal complexes as photosensitizers are ideal building blocks in the construction of rod-like isomer-free assemblies for intramolecular photoinduced charge separation. Approaches to obtain long-lived luminescent metal-to-ligand charge transfer excited states in bistridentate RuII polypyridine complexes via the manipulation of metal-centered state energies are discussed. Following an introduction to general strategies to prolong the excited state lifetimes, more recent work is explored in detail where tridentate ligands with expanded 2,2′:6′,2″-terpyridine cores are utilized. The synthesis of these tridentate ligands and their corresponding RuII complexes is covered. Bistridentate RuII complexes with microsecond metal-to-ligand charge transfer excited state lifetimes are described, and are used in electron donor–photosensitizer–electron acceptor assemblies for efficient vectorial photoinduced charge separation.  相似文献   

13.
A wide variety of ruthenium porphyrin carbene complexes, including [Ru(tpfpp)(CR(1)R(2))] (CR(1)R(2) = C(p-C(6)H(4)Cl)(2) 1 b, C(p-C(6)H(4)Me)(2) 1 c, C(p-C(6)H(4)OMe)(2) 1 d, C(CO(2)Me)(2) 1 e, C(p-C(6)H(4)NO(2))CO(2)Me 1 f, C(p-C(6)H(4)OMe)CO(2)Me 1 g, C(CH==CHPh)CO(2)CH(2)(CH==CH)(2)CH(3) 1 h), [Ru(por)(CPh(2))] (por=tdcpp 2 a, 4-Br-tpp 2 b, 4-Cl-tpp 2 c, 4-F-tpp 2 d, tpp 2 e, ttp 2 f, 4-MeO-tpp 2 g, tmp 2 h, 3,4,5-MeO-tpp 2 i), [Ru(por)[C(Ph)CO(2)Et]] (por=tdcpp 2 j, tmp 2 k), [Ru(tpfpp)(CPh(2))(L)] (L = MeOH 3 a, EtSH 3 b, Et(2)S 3 c, MeIm 3 d, OPPh(3) 3 e, py 3 f), and [Ru(tpfpp)[C(Ph)CO(2)R](MeOH)] (R = CH(2)CH==CH(2) 4 a, Me 4 b, Et 4 c), were prepared from the reactions of [Ru(por)(CO)] with diazo compounds N(2)CR(1)R(2) in dichloromethane and, for 3 and 4, by further treatment with reagents L. A similar reaction of [Os(tpfpp)(CO)] with N(2)CPh(2) in dichloromethane followed by treatment with MeIm gave [Os(tpfpp)(CPh(2))(MeIm)] (3 d-Os). All these complexes were characterized by (1)H NMR, (13)C NMR, and UV/Vis spectroscopy, mass spectrometry, and elemental analyses. X-ray crystal structure determinations of 1 d, 2 a,i, 3 a, b, d, e, 4 a-c, and 3 d-Os revealed Ru==C distances of 1.806(3)-1.876(3) A and an Os==C distance of 1.902(3) A. The structure of 1 d in the solid state features a unique "bridging" carbene ligand, which results in the formation of a one-dimensional coordination polymer. Cyclic voltammograms of 1 a-c, g, 2 a-d, g-k, 3 b-d, 4 a, b, and 3 d-Os show a reversible oxidation couple with E(1/2) values in the range of 0.06-0.65 V (vs Cp(2)Fe(+/0)) that is attributable to a metal-centered oxidation. The influence of carbene substituents, porphyrin substituents, and trans-ligands on the Ru==C bond was examined through comparison of the chemical shifts of the pyrrolic protons in the porphyrin macrocycles ((1)H NMR) and the M==C carbon atoms ((13)C NMR), the potentials of the metal-centered oxidation couples, and the Ru==C distances among the various ruthenium porphyrin carbene complexes. A direct comparison among iron, ruthenium, and osmium porphyrin carbene complexes is made.  相似文献   

14.
The effect of pyrrole- and pyrrolidine-containing ligands (L) on the properties of heteroleptic [RuL2dcbpy]2+ complexes has been investigated. TiO2 electrodes modified with the new complexes exhibited extended absorption domains and high absorbances. Providing that a cobalt-based mediator was used for regeneration of the RuII state, good incident photon-to-current efficiency (near 80%) values were obtained in the pyrrole series.  相似文献   

15.
Two hetero-tritopic bridging ligands L1 and L2 based on 2,2′-bipyridine and 1,10-phenanthroline moieties, and their corresponding Ru(II) complexes [{Ru(bpy)2}33?L1)](PF6)6 and [{Ru(bpy)2}33?L2)](PF6)6 (bpy = 2,2′-bipyridine), were synthesized. The molecular structures of both complexes were deduced by 1H NMR, ESI-MS, ESI-HRMS, elemental analyses, and IR spectroscopy. Quantum calculations on the free bridging ligands and their complexes are also presented. Both complexes display MLCT absorptions at around 454 nm, and emissions at around 613 nm in CH3CN solution at room temperature and at around 590 nm in EtOH–MeOH glassy matrix at 77 K. Cyclic and differential pulse voltammetry studies of both complexes reveal one reversible Ru(II)-centered oxidation and three reversible ligand-centered reductions, in each case.  相似文献   

16.
Two polypodands, tetrakis[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]methane (L1) and 1,1,1-tris[2-(4,5-diazafluoren-9-ylimino)phenoxymethyl]propane (L2), and their corresponding Ru(II) polypyridyl complexes have been synthesized and characterized. The photophysical behaviors of the two complexes were investigated by UV–vis absorption and emission spectroscopy. They display metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm in MeCN solution at room temperature and emission at around 573 nm in EtOH:MeOH (4:1) glassy matrix at 77 K. Electrochemical studies of the two complexes show one Ru(II)-centered oxidation at around 1.35 V and three ligand-centered reductions.  相似文献   

17.
Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.  相似文献   

18.
A tetrathiafulvalene donor has been attached to the naphthalene diimide core via a rigid bridge affording a new planar molecular dyad. Its electronic properties have been studied experimentally by the combination of electrochemistry and UV-vis-NIR spectroscopy. Various electronic excited charge-transfer states are generated in different oxidation states, leading to almost full absorption in the visible to near-IR region with high extinction coefficients. The observed electronic properties are explained on the basis of density-functional-theory. In particular, the oxidized radical species show a strong tendency to undergo aggregation, in which the long-distance attractive interactions overcome the electrostatic repulsions.  相似文献   

19.
Starburst-substituted hexaazatriphenylene compounds have been designed and synthesized by introducing various peripheral aryl substituents to the central heterocyclic core. The effects of various substituent groups on the photophysical and electrochemical properties of the substituted hexaazatriphenylene have been investigated. Significant red-shifts of the absorption peak (from 413 nm to 530 nm) and emission peak (from 432 nm to 700 nm) were observed when the electron-donating ability of the aryl substituents was increased, corresponding to a decrease in the band gap from 2.90 eV to 2.05 eV. Introducing bulky substituents with weak electron-donating ability enhances the fluorescence quantum yield from 23% to 87%. In contrast, incorporating aryl substituents with strong electron-donating ability decreases the fluorescence quantum yield. Also, due to the extended conjugation between the aryl substituents and the hexaazatriphenylene core, the reduction potentials of the compounds were reduced and the LUMO levels were thus increased.  相似文献   

20.
Two tetrapodal ligands L1 and L2 containing 4,5-diazafluorene units have been synthesized and characterized. Both ligands are composed of two kinds of nonequivalent coordinating sites: one involves the 4-(4,5-diazafluoren-9-ylimino)phenoxy moiety, and the other one involves the 2-(4,5-diazafluoren-9-ylimino)phenoxy moiety. The Ru(II) complexes [(bpy)8Ru4(L1)](PF6)8 and [(bpy)8Ru4(L2)](PF6)8 (bpy = 2,2′-bipyridine) have been obtained by refluxing Ru(bpy)2Cl2·2H2O and each ligand in 2-methoxyethanol. Both complexes exhibit metal-to-ligand charge transfer (MLCT) absorptions at around 443 nm and emission at around 574 nm. Electrochemical studies of both complexes display one Ru(II)-centered oxidation at around 1.33 V and three ligand-centered reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号