首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterobimetallic complexes [UO2MoV(CH2L)(hzd)(H2O)2] n , [ZnMoV(CH2L)(hzd)(H2O)2] n and mixedvalence complexes [MoVIO2MoV(CH2L)(hzd)(H2O)2] n (where hzdH3 = inhH3, n = 1; slhH3, n = 2) are synthesized from bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) and monometallic precursor complexes [Mo(CH2LH2)(hzd)]·nH2O (n = 0, 1) in ethanol. The composition of the complexes is established based on the data obtained from the elemental analysis. The structure of the complexes is discussed in the light of data obtained from molar conductance, magnetic moment, electronic, EPR, and IR spectroscopic studies. All complexes have ??B values in the range 1.59?C1.64 B.M., slightly lower than that required for one unpaired electron. The heterobimetallic complexes show two bands, while mixed-valence complexes show only one band in the visible region assigned to the d-d transition. The g-values decrease in going from uranyl-to-molybdenyl-to-zinc complexes containing the isonicotinoyldiazenido (inh) group, however, no such regular trend is observed in the case of complexes containing the salicyloyldiazenido (slh) group in the coordination sphere. In all complexes, the principal dihydrazone ligand is present in the enol form as a bridging hexadentate ligand in the anti-cis configuration where hydrazide ligands are coordinated to the metal centre as a trinegative bidentate ligand in the diazenido form.  相似文献   

2.
Summary Binuclear complexes of the type [M(HDCDP)(H2O)n]2 and [M(HDCDB)(H2O)n]2, where HDCDP and HDCDB are Schiff bases derived from glycine and diacetylmonoxime, and orthoaminobenzoic acid and diacetylmonoxime respectively, M=VOII, CoII, NiII, CuII or AgII and n=0 or 2, have been synthesized. Physical and spectroscopic analyses indicate a binuclear structure for the complexes with metal ions in an octahedral environment, where the ligands coordinate to the metal centre through azomethine nitrogens, oxime and carboxylate oxygen in a tetradentate manner.  相似文献   

3.
The heterobimetallic complexes [MMoO2(L)(H2O)2] (where M = Zn2+ (1), Cu2+ (2), and Co2+ (4)) and [{MMoO3(H2L)(H2O)2}2] (where M = Ni2+ (3) and Mn2+ (5)) are synthesized from bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (H4L) using the monometallic precursor complex [MoO2(H2L)]·H2O in ethanol. The composition of the complexes is established based on the data obtained from the elemental analysis and molecular weight determinations. The structure of the complexes is discussed in the light of data obtained from molar conductance, magnetic moment, electronic, EPR and IR spectroscopic studies.  相似文献   

4.
A bishydrazone was prepared by reacting isatin monohydrazone with 2-hydroxy-1-naphthaldehyde and a series of metal complexes with this new ligand were synthesised by reaction with MnII, FeII, CoII, NiII, CuII and ZnII salts. The complexes were characterised on the basis of elemental analysis, molar conductance, magnetic susceptibility data, u.v.–visible, i.r., e.s.r. and n.m.r. spectral studies, wherever possible and applicable. Analytical data reveal that the nickel(II), copper(II) and zinc(II) complexes possess 1:1 metal–ligand ratios and that manganese(II), iron(II) and cobalt (II) complexes exhibit 1:2 ratios. Infrared spectral data suggest that the bishydrazone behaves as a monobasic tridentate ligand with ONO donor sequence towards the metal ions. X-ray diffraction study of the copper(II) complex indicated an orthorhombic crystal lattice. The e.p.r. spectral data show that the metal–ligand bond has considerable covalent character. The electrochemical behaviour of the copper(II) complex was investigated by cyclic voltammetry (CV). Antibacterial tests of the ligand and the metal complexes were also carried out and it has been observed that the complexes are more potent bactericides than the ligand.  相似文献   

5.
The synthesis and characterisation of some new hexa-coordinated Schiff base complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3 or AsPh3 or py or pip; L = anion of the Schiff bases derived from 2-hydroxy-1-naphthaldehyde and aniline, 4-chloroaniline or 2-methylaniline) are reported. I.r., electronic, 1H-n.m.r, 31P-n.m.r. spectra, catalytic activity and antibacterial activity of the complexes are discussed. An octahedral structure has been tentatively proposed for all the complexes.  相似文献   

6.
The precipitation of uranyl ion with 2-hydroxy-1-naphthaldehyde /2H–1N=HL/ was studied. The solid complex /orange crystals/ was characterized by IR, UV-Vis spectra. Uranium was determined as U3O8 after calcination of the complex at 850°C /37.78% U experimental, 36.64% U calculated for C22H14O6U, UO2L2/. Using a statistical experimental design, the best conditions for quantitative precipitation were obtained. A gravimetric method for the determination of UO 2 2+ is proposed by weighing the complex after drying at 110°C.On leave from Instituto de Química, U.N.A.M.  相似文献   

7.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

8.
Manganese(IV) complexes [MnIV(npah)(H2O)2] (1) and [MnIV(npah)(A)2]?·?nH2O (where A?=?py (2), 2-pic (3), 3-pic (4), 4-pic (5)) and MnIV(npah)(NN)] (NN?=?bpy (6) and phen (7)) have been synthesized from bis(2-hydroxy-1-naphthaldehyde)adipoyldihydrazone in methanol. The composition of the complexes has been established by elemental analyses. Complex 3 has been characterized by mass spectral data also. Structural assessment of the complexes has been based on data from molar conductance, magnetic moment, electronic, electron paramagnetic resonance, and infrared (IR) spectral studies. Molar conductances of the complexes in DMSO suggest non-electrolytes. Magnetic moment and EPR studies suggest +4 oxidation state for manganese in these complexes. Electronic spectral studies suggest six-coordinate octahedral geometry around the metal ions. IR spectra reveal that H4npah coordinates to the metal in enol form. Reaction of the complexes with benzyl alcohol and SO2 has been investigated. Cyclic voltammetric studies of the complexes have also been carried out.  相似文献   

9.
Summary Metal(II) chelates of Schiff bases derived from the condensation of 1,2,3,5,6,7,8,8a-octahydro-3-oxo-N,1-diphenyl-5-(phenylmethylene)-2-naphthalenecarboxamide with o-aminophenol (KAAP), o-aminothiophenol (KAAT) or o-aminobenzoic acid (KAAB) have been prepared and characterized. The complexes are of the type [M(N2X)]2 for M = CuII and M(NX)2·nH2O for M = NiII, CoII and VOII (X = phenolic oxygen, thiophenolic sulphur or carboxylic oxygen; n = 0 or 2). Conductivity data indicate that the complexes are non-ionic. The Schiff bases behave as dibasic tridentate ligands in their copper(II) complexes and as monobasic bidentate ligands in their nickel(II), cobalt(II) and vanadyl(II) complexes. The subnormal magnetic moments of the copper(II) complexes are ascribed to an antiferromagnetic exchange interaction arising from dimerization. Nickel(II) and cobalt(II) complexes are trans octahedral whereas vanadyl(II) complexes are square pyramidal  相似文献   

10.
Bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone(naohH4) interacts with manganese(II) acetate in methanol followed by addition of KOH giving [MnIV(naoh)(H2O)2]. Activated ruthenium(III) chloride reacts with naohH4 in methanol yielding [RuIII(naohH4)Cl(H2O)Cl2]. The replacement of aquo by heterocyclic nitrogen donor in these complexes has been observed when the reaction is carried out in presence of heterocyclic nitrogen donors such as pyridine(py), 3-picoline(3-pic) or 4-picoline(4-pic). The molar conductance values in DMF for these complexes suggest non-electrolytic nature. Magnetic moment values suggest +4 oxidation state for manganese in its complexes, however, ruthenium(III) complexes are paramagnetic with one unpaired electron. Electronic spectral studies suggest six coordinate metal ions. IR spectra reveal that naohH4 coordinates in enol-form and keto-form to manganese and ruthenium, respectively. ESR and cyclic voltammetric studies of the complexes have also been reported.  相似文献   

11.
Summary Metal(II) bis-chelates of the type ML2nB [M=CoII, NiII, and CuII, L=1-hydroxy-2-naphthyl(4-X-styryl)ketone, (X=H, Me, Cl, MeO), B=H2O, Py; n=0, 2] have been prepared and characterised by element analyses, i.r., ligand field spectra, magnetic moments and thermal studies. The copper(II) chelates are anhydrous monomers oftrans-square-planar configuration. The cobalt(II) and nickel(II) chelates, obtained as dihydrates, possess a high-spintrans-octahedral structure. Their anhydrides are polymeric. All the pyridine adducts have high-spintrans-octahedral geometry. The (M–O), order, namely Cu >Ni>Co, parallels the Irving-Williams order. The weak ligand field strength of 1-hydroxy-2-naphthyl(4-X-styryl)ketones is ascribed to inhibition of extensive conjugation arising from deviation of the naphthoyl group from planarity.  相似文献   

12.
Summary The single-step electrochemical synthesis of neutral transition metal complexes of imidazole, pyrazole and their derivatives has been achieved at ambient temperature. The metal was oxidized in an Me2CO solution of the diazole to yield complexes of the general formula: [M(Iz)2] (where M = Co, Ni, Cu, Zn; Iz = imidazolate); [M(MeIz)2] (where M = Co, Ni, Cu, Zn; MeIz = 4-methylimidazolate); [M(PriIz)2] (where M = Co, Ni, Cu, Zn; PriIz = 2-isopropylimidazolate); [M(pyIz)n] (where M = CoIII, CuII, ZnII; pyIz = 2-(2-pyridyl)imidazolate); [M(Pz)n] (where M = CoIII, NiII, CuII, ZnII; Pz = pyrazolate); [M(ClPz)n] and [M(IPz)n] (where M = CoIII, NiII, CuII, ZnII; ClPz = 4-chloropyrazolate; IPz = 4-iodopyrazolate); [M(Me2Pz)n] (where M = CoII, CuI, ZnII; Me2Pz = 3,5-dimethylpyrazolate) and [M(BrMe2Pz)n] (where M = CoII, NiII, CuI, ZnII; BrMe2Pz = 3,5-dimethyl-4-bromopyrazolate). Vibrational spectra verified the presence of the anionic diazole and electronic spectra confirmed the stereochemistry about the metal centre. Variable temperature (360-90 K) magnetic measurements of the cobalt and copper chelates revealed strong antiferromagnetic interaction between the metal ions in the lattice. Data for the copper complexes were fitted to a Heisenberg (S= ) model for an infinite one-dimensional linear chain, yielding best fit values of J=–62––65cm–1 andg = 2.02–2.18. Data for the cobalt complexes were fitted to an Ising (S= ) model with J=–4.62––11.7cm–1 andg = 2.06–2.49.  相似文献   

13.
Transition metal (NiII, CoII, and CuII) complexes with 1,2-bis[2-(3-pyridylmethylideneamino)phenylthio]ethane (1) and 1,2-bis[2-(4-pyridylmethylideneamino)phenylthio]ethane (2) were synthesized for the first time by slow diffusion of solutions of compounds 1 or 2 in CH2Cl2 into solutions of MX2 · nH2O (M = Ni, Co, or Cu; X = Cl or NO3; n = 2 or 6) in ethanol. The reactions with CoII and CuII chlorides afford complexes of composition M(L)Cl2 (L = 1 or 2). The reactions of compound 1 with NiII salts produce complexes with 1,2-bis(2-aminophenylthio)ethane. The molecular structure of dinitrato[1,2-bis(2-aminophenylthio)ethane]nickel(ii) was confirmed by X-ray diffraction. The ligands and the complexes were investigated by cyclic voltammetry and rotating disk electrode voltammetry. The initial reduction of the complexes proceeds at the metal atom. The oxidation of the chlorine-containing complexes proceeds at the coordinated chloride anion. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 350–355, February, 2008.  相似文献   

14.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

15.
Summary Metal complexes of general formula [M(DDE)·nH2O]· nH2O and [M(DDB)·nH2O] [where M = CoII, NiII, CuII, PdII and UO 2 2+ ; n = 0–4; DDE and DDB are the anion of bis(1,2-diphenyl-1-hydroxyimino-2-ethylidine)-1,2-diaminoethane and bis(l,2-diphenyl-l-hydroxy-imino-2-ethylidine)-1,4-diaminobenzene, respectively] were prepared and characterized by i.r. electromagnetic and n.m.r. spectroscopy and magnetic measurements.  相似文献   

16.
New complexes of general empirical formula, [M(NS)2] · nCHCl3 (M = NiII, CuII, PdII or PtII; NS = anionic form of the thiophene-2-aldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate; n = 0, 1) have been synthesized and characterized by physico-chemical techniques. Magnetic and spectroscopic evidence support a square-planar structure for these complexes. The crystal structures of the [Ni(tasbz)2] and [Cu(tasbz)2] · CHCl3 complexes (tasbz = anionic form of the thiophene-2-aldehyde Schiff base of S-benzyldithiocarbazate) have been determined by X-ray diffraction. Both complexes have a trans-planar structure in which the two Schiff base ligands are coordinated to the metal(II) ion as uninegatively charged bidentate ligands via the thiolate sulfur and the azomethine nitrogen atoms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The reactions of 2-(2-pyridyl)benzothiazole (1) with MX2·nH2O salts (M = NiII, CoII, or CuII; X = Cl or ClO4; n = 0–2) in EtOH afforded the corresponding complexes. Depending on the nature of the counterion in the starting metal salt, the reactions give compounds of composition M(1)Cl2·nH2O or Cu(1)2(ClO4)2·H2O. The molecular and crystal structure of the CuII(1)2(ClO4)2·H2O complex was established by X-ray diffraction. The copper atom in this complex has a distorted tetragonal-pyramidal ligand environment and is coordinated by four nitrogen atoms of two ligand molecules and one water molecule. Electrochemical study of the ligand and the resulting complexes by cyclic voltammetry and at a rotating disk electrode demonstrated that ligand 1 stabilizes reduced forms of complexes containing Ni, Co, or Cu atoms in the oxidation state +1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1738–1744, October, 2006.  相似文献   

18.
Summary 2-Aminoacetophenone-2-thenoylhydrazone, Haath, C4H3SC(O)NHN=C(Me)C6H4NH2-o, forms complexes with metal(II) salts of empirical compositions [VO(Haath)2SO4], [M(Haath)2Cl2] [M=CoII, NiII, CuII or ZnII] and [M(aath)2] [M=VIVO, CoII, NiII, CuII or ZnII] which have been characterized by elemental analyses, molar conductance, magnetic susceptibility, electronic, e.s.r., i.r. and n.m.r. (1H and13C) spectral studies. X-ray and electron diffraction patterns have been obtained in order to elucidate the structure of the CuII complexes. Photoacoustic spectra of powder NiII complexes have been recorded and interpreted in the light of u.v./vis. spectra.  相似文献   

19.
Monometallic molybdenum(VI) complexes [MoO2(CH2LH2)]?·?H2O (1), [Mo2O4(CH2LH2)2(A)2] (A?=?py (2), 2-pic (3), 3-pic (4) and 4-pic (5)) and molybdenum(V) complexes [Mo(CH2LH2)(inh)]?·?H2O (6) and [Mo(CH2LH2)(slh)] (7) of bis(2-hydroxy-1-naphthaldehyde)malonoyldihydrazone (CH2LH4) have been synthesized and characterized by various physico-chemical and spectroscopic studies. The compositions of the complexes have been established by elemental analyses and molecular weight determination. The structural assessment of the complexes has been done on the basis of data obtained from molar conductances, magnetic moment studies, electronic, infrared, electron paramagnetic resonance (EPR), proton nuclear magnetic resonance, and 13C proton nuclear magnetic resonance spectroscopic studies. The molar conductance values for the complexes in DMSO suggest that they are non-electrolytes. The magnetic moment values for 6 and 7 correspond to one unpaired electron while the remaining complexes are diamagnetic. Complexes 1, 6, and 7 have six-coordinate octahedral stereochemistry around molybdenum, while 25 are eight-coordinate dodecahedral around the metal centers. EPR spectral features suggest that 7 is less symmetrical than 6.  相似文献   

20.
Crystallisation of the divalent nickel and cobalt complexes of 3-hydroxy-4-methyl-2(3H)-thiazolethione (HMTT) from DMSO yields isostructural chelate complexes M(MTT)2(dmso)2, M = CoII/NiII. The metal atom adopts distorted octahedral coordination via two bidentate MTT ligands arranged in a trans-conformation and two DMSO molecules coordinated through oxygen. Powder X-ray diffraction (PXRD) and energy-dispersive X-ray (EDX) analysis show that the materials form a continuous solid solution Co x Ni1–x (MTT)2(dmso)2 over the entire composition range 0 x 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号