首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dynamic contrast enhanced (DCE) MRI is widely acknowledged to be a helpful tool in the diagnosis and differentiation of tumors. In common clinical settings, the dynamic changes described by the time-intensity curves (TICs) are evaluated to find patterns of atypical tissue behavior, i.e., areas characterized by rapid contrast wash-in and wash-out. Despite the ease of this approach, there is no consensus about the specificity of the TIC shapes in discriminating tumor grades. We explore a new way of looking at TICs, where these are not averaged over a selected region of interest (ROI), but rendered pixel-by-pixel. In this way, the characteristic of the tissue is not given as a single TIC classification but as a distribution of the different TIC patterns. We applied this method in a group of patients with chondroid tumors and compared its outcome with the outcome of the standard ROI-based averaged TIC analysis. Furthermore, we focused on the problem of ROI selection in these tumors and how this affects the outcome of the TIC analysis. Finally, we investigated what relationship exists between the "standard" DCE-MRI parameter maximum enhancement (ME) and the TIC shape. CONCLUSIONS: We demonstrate that, where the ROI approach fails to show the presence of areas of rapid contrast wash-in and wash-out, the pixel-by-pixel approach reveals the coexistence of a heterogeneous pattern of TIC shapes. Secondly, we point out the differences in the DCE MRI parameters and tumor volume that can result when selecting the tumor based on DCE parameter maps or post-contrast T1-weighted images. Finally, we show that ME maps and TIC shape maps highlight different tissue areas and, therefore, the use of the ME maps is not appropriate for the correct identification of areas of atypical TICs.  相似文献   

2.
This paper presents a method that can recover absolute phase pixel by pixel without embedding markers on three phase-shifted fringe patterns, acquiring additional images, or introducing additional hardware component(s). The proposed three-dimensional (3D) absolute shape measurement technique includes the following major steps: (1) segment the measured object into different regions using rough priori knowledge of surface geometry; (2) artificially create phase maps at different z planes using geometric constraints of structured light system; (3) unwrap the phase pixel by pixel for each region by properly referring to the artificially created phase map; and (4) merge unwrapped phases from all regions into a complete absolute phase map for 3D reconstruction. We demonstrate that conventional three-step phase-shifted fringe patterns can be used to create absolute phase map pixel by pixel even for large depth range objects. We have successfully implemented our proposed computational framework to achieve absolute 3D shape measurement at 40 Hz.  相似文献   

3.

Purpose

To investigate the correlation between perfusion-related parameters obtained with intravoxel incoherent motion (IVIM) and classical perfusion parameters obtained with dynamic contrast-enhanced (DCE) magnetic resonance imaging in patients with head and neck squamous cell carcinoma (HNSCC), and to compare direct and asymptotic fitting, the pixel-by-pixel approach, and a region of interest (ROI)-based approach respectively for IVIM parameter calculation.

Materials and methods

Seventeen patients with HNSCC were included in this retrospective study. All magnetic resonance (MR) scanning was performed using a 3 T MR unit. Acquisition of IVIM was performed using single-shot spin-echo echo-planar imaging with three orthogonal gradients with 12 b-values (0, 10, 20, 30, 50, 80, 100, 200, 400, 800, 1000, and 2000). Perfusion-related parameters of perfusion fraction ‘f’ and the pseudo-diffusion coefficient ‘D*’ were calculated from IVIM data by using least square fitting with the two fitting methods of direct and asymptotic fitting, respectively. DCE perfusion was performed in a total of 64 dynamic phases with a 3.2-s phase interval. The two-compartment exchange model was used for the quantification of tumor blood volume (TBV) and tumor blood flow (TBF). Each tumor was delineated with a polygonal ROI for the calculation of f, f ? D* performed using both the pixel-by-pixel approach and the ROI-based approach. In the pixel-by-pixel approach, after fitting each pixel to obtain f, f ? D* maps, the mean value in the delineated ROI on these maps was calculated. In the ROI-based approach, the mean value of signal intensity was calculated within the ROI for each b-value in IVIM images, and then fitting was performed using these values. Correlations between f in a total of four combinations (direct or asymptotic fitting and pixel-by-pixel or ROI-based approach) and TBV were respectively analyzed using Pearson's correlation coefficients. Correlations between f ? D* and TBF were also similarly analyzed.

Results

In all combinations of f and TBV, f ? D* and TBF, there was a significant correlation. In the comparison of f and TBV, a moderate correlation was observed only between f obtained by direct fitting with the pixel-by-pixel approach, whereas a good correlation was observed in the comparisons using the other three combinations. In the comparison of f ? D* and TBF, a good correlation was observed only with f ? D* obtained by asymptotic fitting with the ROI-based approach. In contrast, moderate correlations were observed in the comparisons using the other three combinations.

Conclusion

IVIM was found to be feasible for the analysis of perfusion-related parameters in patients with HNSCC. Especially, the combination of asymptotic fitting with the ROI-based approach was better correlated with DCE perfusion.  相似文献   

4.
GRASP (Golden-Angle Radial Sparse Parallel MRI) is a data acquisition and reconstruction technique that combines parallel imaging and golden-angle radial sampling. The continuously acquired free breathing Dynamic Contrast Enhanced (DCE) golden-angle radial MRI data of liver and abdomen has artifacts due to respiratory motion, resulting in low vessel-tissue contrast that makes GRASP reconstructed images less suitable for diagnosis. In this paper, DCE golden-angle radial MRI data of abdomen and liver perfusion is sorted into different motion states using the self-gating property of radial acquisition and then reconstructed using GRASP. Three methods of amplitude-based data binning namely uniform binning, adaptive binning and optimal binning are applied on the DCE golden-angle radial data to extract different motion states and a comparison is performed with the conventional GRASP reconstruction. Also, a comparison among the amplitude-based data binning techniques is performed and benefits of each of these binning techniques are discussed from a clinical perspective. The image quality assessment in terms of hepatic vessel clarity, liver edge sharpness, contrast enhancement clarity and streaking artifacts is performed by a certified radiologist. The results show that DCE golden-angle radial trajectories benefit from all the three types of amplitude-based data binning methods providing improved reconstruction results. The choice of binning technique depends upon the clinical application e.g. uniform and adaptive binning are helpful for a detailed analysis of lesion characteristic and contrast enhancement in different motion states while optimal binning can be used when clinical analysis requires a single image per contrast enhancement phase with no motion blurring artifacts.  相似文献   

5.
Three dimensional bilateral imaging is the standard for most clinical breast dynamic contrast-enhanced (DCE) MRI protocols. Because of high spatial resolution (sRes) requirement, the typical 1–2 min temporal resolution (tRes) afforded by a conventional full-k-space-sampling gradient echo (GRE) sequence precludes meaningful and accurate pharmacokinetic analysis of DCE time-course data. The commercially available, GRE-based, k-space undersampling and data sharing TWIST (time-resolved angiography with stochastic trajectories) sequence was used in this study to perform DCE-MRI exams on thirty one patients (with 36 suspicious breast lesions) before their biopsies. The TWIST DCE-MRI was immediately followed by a single-frame conventional GRE acquisition. Blinded from each other, three radiologist readers assessed agreements in multiple lesion morphology categories between the last set of TWIST DCE images and the conventional GRE images. Fleiss’ κ test was used to evaluate inter-reader agreement. The TWIST DCE time-course data were subjected to quantitative pharmacokinetic analyses. With a four-channel phased-array breast coil, the TWIST sequence produced DCE images with 20 s or less tRes and ~ 1.0×1.0×1.4 mm3 sRes. There were no significant differences in signal-to-noise (P=.45) and contrast-to-noise (P=.51) ratios between the TWIST and conventional GRE images. The agreements in morphology evaluations between the two image sets were excellent with the intra-reader agreement ranging from 79% for mass margin to 100% for mammographic density and the inter-reader κ value ranging from 0.54 (P<.0001) for lesion size to 1.00 (P<.0001) for background parenchymal enhancement. Quantitative analyses of the DCE time-course data provided higher breast cancer diagnostic accuracy (91% specificity at 100% sensitivity) than the current clinical practice of morphology and qualitative kinetics assessments. The TWIST sequence may be used in clinical settings to acquire high spatiotemporal resolution breast DCE-MRI images for both precise lesion morphology characterization and accurate pharmacokinetic analysis.  相似文献   

6.
Because of its superior soft-tissue-imaging capabilities, MRI has proved to be an excellent modality for visualizing the contents of the female pelvis. In an effort to potentially improve gynecological MRI studies, we have applied color composite techniques to sets of spin-echo and gradient-echo gray-tone MR images obtained from various individuals. For composite generation, based on tissue region of interest calculated mean pixel intensity values, various colors were applied to spatially aligned images using a DEC MicroVAX II computer with interactive digital language (IDL) so that tissue contrast patterns could be optimized in the final image. The IDL procedures, which are similar to those used in NASA's LANDSAT image processing system, allowed the generation of single composite images displaying the combined information present in a series of spatially aligned images acquired using different pulse sequences. With our composite generation techniques, it was possible to generate seminatural-appearing color images of the female pelvis that possessed enhanced conspicuity of specific tissues and fluids. For comparison with color composites, classified images were also generated based on computer recognition and statistical separation of distinct tissue intensity patterns in an image set using the maximum likelihood processing algorithm.  相似文献   

7.
IntroductionT1-based method is considered as the gold standard for extracellular volume fraction (ECV) mapping. This technique requires at least a 10 min delay after injection to acquire the post injection T1 map. Quantitative analysis of Dynamic Contrast Enhancement (DCE) images could lead to an earlier estimation of an ECV like parameter (2 min). The purpose of this study was to design a quantitative pixel-wise DCE analysis workflow to assess the feasibility of an early estimation of ECV.MethodsFourteen patients with mitral valve prolapse were included in this study. The MR protocol, performed on a 3 T MR scanner, included MOLLI sequences for T1 maps acquisition and a standard SR-turboFlash sequence for dynamic acquisition. DCE data were acquired for at least 120 s. We implemented a full DCE analysis pipeline with a pre-processing step using an innovative motion correction algorithm (RC-REG algorithm) and a post-processing step using the extended Tofts Model (ECVETM). Estimated ECVETM maps were compared to standard T1-based ECV maps (ECVT1) with both a Pearson correlation analysis and a group-wise analysis.ResultsImage and map quality assessment showed systematic improvements using the proposed workflow. Strong correlation was found between ECVETM, and ECVT1 values (r-square = 0.87).ConclusionA DCE analysis workflow based on RC-REG algorithm and ETM analysis can provide good quality parametric maps. Therefore, it is possible to extract ECV values from a 2 min-long DCE acquisition that are strongly correlated with ECV values from the T1 based method.  相似文献   

8.
There are many challenges in developing robust imaging biomarkers that can be reliably applied in a clinical trial setting. In the case of dynamic contrast-enhanced (DCE) MRI, one such challenge is to obtain accurate precontrast T1 maps for subsequent use in two-compartment pharmacokinetic models commonly used to fit the MR enhancement time courses. In the prostate, a convenient and common approach for this task has been to use the same 3D spoiled gradient-echo sequence used to collect the DCE data, but with variable flip angles (VFAs) to collect data suitable for T1 mapping prior to contrast injection. However, inhomogeneous radiofrequency conditions within the prostate have been found to adversely affect the accuracy of this technique. Herein we demonstrate the sensitivity of DCE pharmacokinetic parameters to precontrast T1 values and examine methods to improve the accuracy of T1 mapping with flip angle-corrected VFA SPGR methods, comparing T1 maps from such methods with “gold standard” reference T1 maps generated with saturation recovery experiments performed with fast spin-echo (FSE) sequences.  相似文献   

9.
The goal of image interpolation is to produce a high-resolution image from its low-resolution counterpart. It has significant applications in video sensor network, where the resolution of images usually needs to be enhanced at the end user due to the limited transmission bandwidth. The key challenge of image interpolation is to preserve the edge structure of the image. In this paper, a new image interpolation approach is proposed to adaptively adjust the interpolation according to the directional variations of images. More specifically, at each pixel position to be interpolated, its neighboring pixels are projected onto 1D direction according to a number of proposed patterns. Then the direction, of which the variation is smallest, is chosen as the direction to perform image interpolation. Experimental results are provided to show that the proposed approach outperforms several conventional edge-directed image interpolation algorithms.  相似文献   

10.
Automated magnetic resonance imaging (MRI) texture analysis was compared with visual MRI analysis for the diagnosis of skeletal muscle dystrophy in 14 healthy and 17 diseased subjects. MRI texture analysis was performed on 8 muscle regions of interest (ROI) using four statistical methods (histogram, co-occurrence matrix, gradient matrix, runlength matrix) and one structural (mathematical morphology) method. Nine senior radiologists assessed full leg transverse slice images and proposed a diagnosis. The 59 extracted texture parameters for each ROI were statistically analyzed by Correspondence Factorial Analysis. Non-parametric tests were used to compare diagnoses based on automated texture analysis and visual analysis. Texture analysis methods discriminated between healthy volunteers and patients with a sensitivity of 70%, and a specificity of 86%. Comparison with visual analysis of MR images suggests that texture analysis can provide useful information contributing to the diagnosis of skeletal muscle disease.  相似文献   

11.
PurposeProgrammed death 1 ligand (PD-L 1) plays an essential role in oncology. It might be crucial to predict its expression non-invasively by imaging. Dynamic-contrast enhanced MRI (DCE MRI) is one of the important imaging modalities in head and neck squamous cell cancer (HNSCC). The aim of the present study was to analyze possible associations between histogram analysis parameters of DCE MRI and PD-L 1 expression in HNSCCMethodsOverall, 26 patients with primary HNSCC of different localizations were involved in the study. DCE MRI was obtained on a 3 T MRI and analyzed with a whole lesion measurement using a histogram approach. PD-L 1 expression was estimated on bioptic samples before any form of treatment using 3 scores (Tumor positive score (TPS), Immune cell score (ICS) and Combined positive score (CPS)).ResultsCPS correlated with mode derived from Ktrans (r = 0.40, p = .04). Also CPS correlated with P90 derived from Kep (r = 0.40, p = .04). ICS correlated with the maximum derived from Kep (r = 0.41, p = .03) and entropy derived from Kep (r = 0.43, p = .02). There were no associations between DCE MRI parameters and TPS.ConclusionKtrans and Kep related histogram analysis parameters derived from DCE MRI correlated moderately with PD-L 1 expression of immune cells in HNSCC.  相似文献   

12.

Purpose

The purpose of this study was to compare histologically determined cellularity and extracellular space to dynamic contrast-enhanced magnetic resonance imaging (DCE MRI)-based maps of a two-compartment model's parameters describing tumor contrast agent extravasation, specifically tumor extravascular extracellular space (EES) volume fraction (ve), tumor plasma volume fraction (vp) and volume-normalized contrast agent transfer rate between tumor plasma and interstitium (KTRANS/VT).

Materials and Methods

Obtained ve, vp and KTRANS/VT maps were estimated from gadolinium diethylenetriamine penta-acetic acid DCE T1-weighted gradient-echo images at resolutions of 469, 938 and 2500 μm. These parameter maps were compared at each resolution to histologically determined tumor type, and the high-resolution 469-μm maps were compared with automated cell counting using Otsu's method and a color-thresholding method for estimated intracellular (Vintracellular) and extracellular (Vextracellular) space fractions.

Results

The top five KTRANS/VT values obtained from each tumor at 469 and 938 μm resolutions are significantly different from those obtained at 2500 μm (P<.0001) and from one another (P=.0014). Using these top five KTRANS/VT values and the corresponding tumor EES volume fractions ve, we can statistically differentiate invasive ductal carcinomas from noninvasive papillary carcinomas for the 469- and 938-μm resolutions (P=.0017 and P=.0047, respectively), but not for the 2500-μm resolution (P=.9008). The color-thresholding method demonstrated that ve measured by DCE MRI is statistically similar to histologically determined EES. The Vextracellular obtained from the color-thresholding method was statistically similar to the ve measured with DCE MRI for the top 10 KTRANS/VT values (P>.05). DCE MRI-based KTRANS/VT estimates are not statistically correlated with histologically determined cellularity.

Conclusion

DCE MRI estimates of tumor physiology are a limited representation of tumor histological features. Extracellular spaces measured by both DCE MRI and microscopic analysis are statistically similar. Tumor typing by DCE MRI is spatial resolution dependent, as lower resolutions average out contributions to voxel-based estimates of KTRANS/VT. Thus, an appropriate resolution window is essential for DCE MRI tumor diagnosis. Within this resolution window, the top KTRANS/VT values with corresponding ve are diagnostic for the tumor types analyzed in this study.  相似文献   

13.
In the development of new medical imaging techniques, references to which the images can be compared are necessary if one wants to assess how precise the images are. This is especially interesting in diagnostic ultrasound where a number of artefacts influence the image. The reference can either be derived from a phantom with precisely known properties and geometry, from the specifications of a computer phantom (simulated images) or from evaluation of biological tissue. The third approach can be conducted with other medical imaging modalities (CT, MRI, etc.) or "destructive testing" involving histology. In this paper, aspects of the latter method is considered in detail. Formalin fixed tissue is moulded into an agar block containing at set of fiducial markers. The block is scanned with ultrasound. Both tissue and fiducial markers are imaged. The block is afterwards sliced at the location of the fiducial markers. The slices are then photographed and analyzed histologically. From this data, reference maps with similar geometry as the ultrasound images can be created. Ideally, for each pixel in the ultrasound image, these reference maps indicate tissue type, such as collagen poor tissue, collagen rich tissue, etc. Many of the sources of error as well as the challenges with such a method are discussed.  相似文献   

14.
刘聪  李言俊  张科 《光子学报》2014,39(12):2257-2262
在二维魏格纳分布的框架内,针对魏格纳变换的交叉项问题和计算量大的问题,提出了合成孔径雷达图像局部伪魏格纳变换的目标和目标阴影的分割方法.首先,将合成孔径雷达图像进行二维伪魏格纳变换,得到各像素点的二维能量谱图|然后提取各像素点的二维能量谱图对应位置值形成多个不同频段的与原图像同大小的能量谱图|最后,对不同频段的能量谱图采用不同的处理方法后,将各能量谱图相加处理后形成区域标识图像,最终得到原图像的目标和目标阴影分割图像.本文利用该方法对MSTAR切片图像进行了分割试验,并对分割图像与频谱最大值距离或方位分割算法和基于双参量CFAR与隐马尔科夫联合分割算法进行了分割图像对比度对比.实验结果表明,采用本文算法的合成孔径雷达分割图像,对比度明显提高,且保留了目标图像细节.  相似文献   

15.
Electron paramagnetic resonance imaging (EPRI) is a technique that has been used for in vivo oxygen imaging of small animals. In continuous wave (CW) EPRI, the measurement can be interpreted as a sampled 4D Radon transform of the image function. The conventional filtered-backprojection (FBP) algorithm has been used widely for reconstructing images from full knowledge of the Radon transform acquired in CW EPRI. In practical applications of CW EPRI, one often is interested in information only in a region of interest (ROI) within the imaged subject. It is desirable to accurately reconstruct an ROI image only from partial knowledge of the Radon transform because acquisition of the partial data set can lead to considerable reduction of imaging time. The conventional FBP algorithm cannot, however, reconstruct accurate ROI images from partial knowledge of the Radon transform of even dimension. In this work, we describe two new algorithms, which are referred to as the backprojection filtration (BPF) and minimum-data filtered-backprojection (MDFBP) algorithms, for accurate ROI-image reconstruction from a partial Radon transform (or, truncated Radon transform) in CW EPRI. We have also performed numerical studies in the context of ROI-image reconstruction of a synthetic 2D image with density similar to that found in a small animal EPRI. This demonstrates both the inadequacy of the conventional FBP algorithm and the success of BPF and MDFBP algorithms in ROI reconstruction. The proposed ROI imaging approach promises a means to substantially reduce image acquisition time in CW EPRI.  相似文献   

16.
Image fusion for visible and infrared images is a significant task in image analysis. The target regions in infrared image and abundant detail information in visible image should be both extracted into the fused result. Thus, one should preserve or even enhance the details from original images in fusion process. In this paper, an algorithm using pixel value based saliency detection and detail preserving based image decomposition is proposed. Firstly, the multi-scale decomposition is constructed using weighted least squares filter for original infrared and visible images. Secondly, the pixel value based saliency map is designed and utilized for image fusion in different decomposition level. Finally, the fusion result is reconstructed by synthesizing different scales with synthetic weights. Since the information of original signals can be well preserved and enhanced with saliency extraction and multi scale decomposition process, the fusion algorithm performs robustly and excellently. The proposed approach is compared with other state-of the-art methods on several image sets to verify the effectiveness and robustness.  相似文献   

17.
The purpose of this study is to evaluate the diagnostic efficacy of the representative characteristic kinetic curve of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) extracted by fuzzy c-means (FCM) clustering for the discrimination of benign and malignant breast tumors using a novel computer-aided diagnosis (CAD) system. About the research data set, DCE-MRIs of 132 solid breast masses with definite histopathologic diagnosis (63 benign and 69 malignant) were used in this study. At first, the tumor region was automatically segmented using the region growing method based on the integrated color map formed by the combination of kinetic and area under curve color map. Then, the FCM clustering was used to identify the time-signal curve with the larger initial enhancement inside the segmented region as the representative kinetic curve, and then the parameters of the Tofts pharmacokinetic model for the representative kinetic curve were compared with conventional curve analysis (maximal enhancement, time to peak, uptake rate and washout rate) for each mass. The results were analyzed with a receiver operating characteristic curve and Student's t test to evaluate the classification performance. Accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the combined model-based parameters of the extracted kinetic curve from FCM clustering were 86.36% (114/132), 85.51% (59/69), 87.30% (55/63), 88.06% (59/67) and 84.62% (55/65), better than those from a conventional curve analysis. The A(Z) value was 0.9154 for Tofts model-based parametric features, better than that for conventional curve analysis (0.8673), for discriminating malignant and benign lesions. In conclusion, model-based analysis of the characteristic kinetic curve of breast mass derived from FCM clustering provides effective lesion classification. This approach has potential in the development of a CAD system for DCE breast MRI.  相似文献   

18.
In this paper, we propose a novel computational integral imaging reconstruction (CIIR) method to improve the visual quality of the reconstructed images using a pixel-to-pixel mapping and an interpolation technique. Since an elemental image is magnified inversely through the corresponding pinhole and mapped on the reconstruction output plane based on pinhole-array model in the conventional CIIR method, the visual quality of reconstructed output image (ROI) degrades due to the interference problem between adjacent pixels during the superposition of the magnified elemental images. To avoid this problem, the proposed CIIR method generates dot-pattern ROIs using a pixel-to-pixel mapping and substitutes interpolated values for the empty pixels within the dot-pattern ROIs using an interpolation technique. The interpolated ROIs provides a much improved visual quality compared with the conventional method because of the exact regeneration of pixel positions sampled in the pickup process without interference between pixels. Moreover, it can enable us to reduce a computational cost by eliminating the magnification process used in the conventional CIIR. To confirm the feasibility of the proposed system, some experiments are carried out and the results are presented.  相似文献   

19.
Three-dimensional tongue shape during vowel production is analyzed using the three-mode PARAFAC (parallel factors) model. Three-dimensional MRI images of five speakers (9 vowels) are analyzed. Sixty-five virtual fleshpoints (13 segments along the rostral-caudal dimension and 5 segments along the right-left direction) are chosen based on the interpolated tongue shape images. Methods used to adjust the alignment of MRI images, to set up the fleshpoints, and to measure the position of the fleshpoints are presented. PARAFAC analysis of this 3D coordinate data results in a stable two-factor solution that explains about 70% of the variance.  相似文献   

20.
This study introduces a new processing means that uses the original signal (rather than contrast agent concentration) from dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) to calculate a relative cerebral blood volume map and a tissue similarity map (TSM). Ten healthy volunteers and eight multiple sclerosis (MS) patients were studied using high resolution PWI. The TSM is found by choosing a reference region in one slice and comparing its signal in a mean squared error sense to the signal from every pixel in all images throughout the brain. The TSMs provide a means to determine which tissues have similar flow characteristics with high contrast and signal-to-noise ratios. The effective blood volume measured from this approach is nearly identical to that from conventional relative cerebral blood volume (rCBV) maps but with better signal-to-noise. Of interest is the fact that choosing one MS lesion as the reference tissue appears to be enough to find nearly all lesions throughout the brain. That is, these lesions all behave the same from a vascular point of view. The TSM results are robust within and across slices properly nulling the same type of tissue throughout the brain for a given reference region. TSM derived rCBV agrees well with the conventional derived rCBV using contrast agent concentration. TSM may provide a new means to study similarities between blood flow patterns in tissue in the brain and in better diagnosing vascular differences between tissues and lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号