首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Evolution of the hydrodynamic size d HD of colloidal graphene oxide (GO) sheets in water induced by the photochemical GO reduction by UV light was studied by the dynamic light scattering spectroscopy. An increase of d HD at an initial stage of the photoreduction is caused by partial photoelimination of the functional groups of GO and breaking of the hydrogen bonds between the fragments of the GO particles resulting in the sheets' unfolding. At deeper photoreduction, a decrease of d HD is observed as a result of ππ stacking interaction between the aromatic areas of GO particles and crumpling of the GO sheets. Variations of pH affect strongly the d HD of the photoreduced GO. At pH lowering from 6–7 to 2–3, a drastic growth of d HD and the sheets' aggregation are observed, caused by the protonation of the carboxyl groups. At pH elevation to 11–12, on the contrary, a decrease of d HD is observed, which is more pronounced the longer the photochemical GO reduction. The observation reflects crumpling/scrolling of the the GO sheets to minimize the contact area between the aromatic components of the photoreduced GO particles and the dispersive medium. The changes of the photoreduced GO particle size in basic media were found to be reversible.  相似文献   

2.
Measurements of the electrophoretic mobility (u E) of particles of colloidal α-alumina were made as a function of pH, electrolyte concentration and electrolyte type (NaCl, NaNO3 and KCl) using two similar instrumental techniques. Significant differences (50% or less) in the values of u E of particles in NaCl were obtained from the two instruments; however, the isoelectric points (IEPs) (the pH at which u E=0), estimated from the two sets of measurements, occurred at 7.5 ± 0.3 and 7.8 ± 0.05 and were not significantly different. The latter estimate corresponds with those for particles in KCl and NaNO3 of 8.05 ± 0.11 and 7.95 ± 0.18, respectively, made using the same instrument and indicate that the IEP was a weak function of electrolyte type. When cations acted as counterions (pH > IEP), the absolute magnitudes and the ranges of u E with electrolyte concentration were found to be significantly less than when anions acted as counterions (IEP > pH). Estimates of the zeta potential (ζ), made using various procedures, showed variations of up to 25% at low ratios of electrical-double-layer thickness (κ −1) to particle radius (a) (κa∼10) and were of a similar scale to differences in u E, but no significant variations (95% confidence) in ζ were obtained at high values (κa∼200). Received: 12 July 2000 Accepted: 17 October 2000  相似文献   

3.
The photocatalytic activity of different commercially available titanium dioxide materials is compared employing dichloroacetate (DCA) as the model pollutant. A mechanism is presented evincing that one photon is sufficient to initiate the complete mineralization of one DCA molecule. The observed non-linear dependence of the photonic efficiency ζ of the DCA degradation upon the incident photon rate is explained by a simple mathematical model considering only one-electron charge transfer and recombination reactions on the semiconductor particle. Since photonic efficiencies below 1% are observed when aromatic compounds are used as model pollutants, an electron-shuttle mechanism is proposed involving the benzoquinone/hydroquinone redox couple and resulting in an overall enhancement of the electon/hole recombination. Newly synthesized colloidal Ti/Fe mixed oxide particles exhibit higher activity for the degradation of dichloroacetate than pure TiO2 colloids, however, they still suffer from cathodic corrosion problems. Finally, a self-contained thin film fixed bed reactor (TFFBR) is presented which can be operated as a stand-alone system gaining the energy for the pump operation from an appropriate photovoltaic module and regulating the water flow as a function of the solar flux.  相似文献   

4.
Interest in the synthesis of composite colloidal particles consisting of a core and shell with different compositions stems from the fact that such particles can be useful in processes where the properties of both core (e.g., size and shape homogeneity, ease of preparation in large amounts, magnetic characteristics, etc.) and shell (interfacial properties, porosity, chemical stability, etc.) might be of interest. However, the applicability must be based on a proper characterization of those properties. In this work, colloidal spheres of hematite (α-Fe2O3) were used as nuclei of mixed particles where the shell is yttrium oxide. The electrical properties of the aqueous interface are compared to those of the pure oxides by means of potentiometric titration of their surface charge and potential against pH, as a function of indifferent electrolyte concentration. It is found that the mixed particles efficiently mimic yttrium oxide, since the behavior of their surface electrical characteristics closely resembles that of the latter compound. Differences are found, however, that can be ascribed to an incomplete or porous coverage, but such divergences are of little significance when an overall comparison is carried out. Received: 30 January 2001 Accepted: 11 July 2001  相似文献   

5.
Using high intensity ultrasonic irradiation, we prepared calcium phosphate–albumin colloidal particles from aqueous solutions of Ca(H2PO4)2 and Ca(OH)2 in the presence of bovine serum albumin (BSA). The effect of concentration of BSA (2–5 g/L) properties of the colloidal particles was studied at constant temperature. The effect of a resting period on the size distribution of the colloidal particles was also investigated. Morphology, phase composition, average diameter, size distribution and zeta potential were obtained by transmission electron microscopy, X-ray diffraction, particle size determination by PCS and electrokinetic measurements.  相似文献   

6.
Temperature dependences of the magnetic susceptibility of solutions and powders of polyaniline synthesized by oxidative polymerization using two methods were measured by ESR in the temperature range from 123 to 423 K. The dependences observed can be described by the integral of susceptibility of the polymer fragments in the triplet state over the singlet—triplet splitting from E 1 to E 2 with constant weight. The susceptibility of the fragments was accepted to obey the Bleaney—Bowers equation. The most part of the experimental dependences can be presented as the sum of the temperature-independent susceptibility and the susceptibility obeying the Curie law. The both susceptibilities are described in a single manner at E 1 < 0. In some cases, the comparison of the calculated and experimental dependences makes it possible to determine the length of the fragments L. The conditions of polymer synthesis, heating, and water vapors affect the E 1 and E 2 values. A similar analysis can be applied to other conducting polymers. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 316–321, February, 2008.  相似文献   

7.
Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid‐phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3–125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01–0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons.  相似文献   

8.
Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1–15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM−1 with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis.  相似文献   

9.
 The association behaviour of triblock copoly(ethylene oxide/tetrahydrofuran/ethylene oxide), in particular E100T27E100, in aqueous solutions has been investigated by means of static and dynamic light scattering, nuclear magnetic reso-nance (NMR) and surface tension techniques. On raising the polymer concentration at room temperature, the copolymer aggregates to form micelles with an aggregation number of about 105 (R G, mic≈15 nm and R H, mic≈13 nm, as revealed by light scattering and FT-PGSE NMR measurements, respectively). The micelles are kinetically quite stable, the micellar lifetime is shown to be more than 1 h. The residence time of a single unimer in a micelle is more than 140 ms. The apparent radius of gyration R G, mic is fairly independent of concentration, but large effects are observed on varying the temperature. Raising the temperature initially results in an increase of the apparent micellar size, followed by a maximum at an intermediate temperature (≈45 °C). At higher temperatures a contraction of the micelles is observed. The shape of the micelles also appear to vary in this temperature interval. The interactions responsible for these phenomena are discussed in terms of, e.g., the temperature-dependent solubility of the alkylene oxide segments in water and polydispersity effects. Received: 29 January 1996 acccepted : 4 November 1996  相似文献   

10.
The present study deals with the synthesis of highly uniform and spherical visible-light-driven colloidal silver phosphate (Ag3PO4) with the size of ~200 nm. These colloidal particles showed excellent photocatalytic activity for the removal of different dyes and pesticide under sunlight-type excitation. The photocatalytic activity of these particles, obtained by colloidal method, was found to be much higher than silver phosphate obtained by precipitation method, or titanium dioxide, or zinc oxide under identical conditions. The effect of catalyst amount and recyclability on the photocatalytic response of Ag3PO4 was also investigated.  相似文献   

11.
Graphene nanosheets are prepared from H2 thermal reduction of graphite oxide at 300 °C. The graphite oxide interlayer has readily been expanded through chemical oxidation of meso-carbon micro-beads graphite raw material. After H2 reduction, the carbon/oxygen ratio of graphene is increased from that of graphite oxide due to the removal of oxygen-containing functional groups as it is demonstrated from IR spectra. The d-spacing of resulting graphene nanosheets is increased to 0.37 nm, which facilitates lithium intercalation. Such synthesized graphene nanosheet material as anode of lithium-ion battery has exhibited high reversible discharge capacity of 1,540 mAh g−1 at a current density of 50 mA g−1, and the coulumbic efficiency was 97% over 50 cycles. The discharge curve of the anode material shows a continuously increased voltage profile, which is a characteristic of a capacitive material.  相似文献   

12.
13.
The synthesis and characterization of graphite oxide (GO), graphene (GS), and the composites: GS–CeO2 and GO–CeO2 are reported. This synthesis was carried out by mixing aqueous solutions of CeCl3·7H2O and GO, which yields the oxidized composite GO–CeO2. GO–CeO2 was hydrothermally reduced with ethylene glycol, at 120 °C, yielding the reduced composite GS–CeO2. GO, GS ,and the composites with CeO2 were characterized by CHN, TG/DTG, BET, XRD, SEM microscopy, FTIR, and Raman spectroscopy. The estimation of crystallite size of CeO2 anchored on GO and on GS by Raman, XRD, and SEM agreed very well showing diameters about 5 nm. The role of particles of CeO2 coating carbon sheets of GO and GS was discussed.  相似文献   

14.
The synthesis of uniform colloidal rod-like In(OH)3 particles from relatively concentrated solutions of InCl3 (0.1 mol dm-3) in short reaction time (<15 min) by the controlled double-jet precipitation (CDJP) technique is described. The effects of the molar ratio of [NH4OH]/[InCl3], temperature, concentration of the reactants, and reaction time on the size and shape of the final products are investigated. It is found that such In(OH)3 particles are formed by aggregation of nanosize subunits. Received: 14 April 1998 Accepted: 15 April 1998  相似文献   

15.
A facile and scalable preparation of dispersion of isolated graphene in various organic solvents has been developed by combining between covalent and noncovalent functionalizations of the graphene surface. Covalently functionalized graphene (FRG) was prepared by the reaction of partially reduced graphene oxide with aryl diazonium salts, followed by the graphene oxide being completely reduced with hydrazine. The resulting FRG disperse readily in organic solvents such as N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidinone and the functionalization of graphene was characterized by Fourier transform infrared spectroscopy, thermogravimetric thermogram, X-ray photoelectron spectroscopy, and Raman spectroscopy. The hydrophobic surface of FRG was noncovalently wrapped with aromatic hexakis-dodecylhexa-peri-benzocorone (HBC) by simply mixing of dispersion of FRG in DMF with toluene solution of HBC. The complexation of FRG and HBC was monitored by viewing the absorption and fluorescence spectral changes. Atomic force microscopic images confirmed that graphene was covalently and noncovalently functionalized, while keeping a two-dimensional sheet shape.  相似文献   

16.
A novel and environmentally friendly method based on mixing of colloidal polymer particles and graphene sheets has been developed. It is found that colloidal polymers can be employed to stabilize graphene oxide (GO) sheets during reduction to graphene. Adsorption of polymer particles at the surface of graphene layers seems to be underlying mechanism of stabilization of graphene sheets. Surface polarity of the polymer particles is crucial for the successful stabilization of graphene layers. Presence of colloidal particles at the surface of graphene prohibits restacking and agglomeration of nanolayers, resulting in fine dispersion of graphene throughout the polymeric matrix. Formation of strong bond between polar segments of the polymer chain and oxygen groups of graphene sheets generates a strong interface improving final properties of the composites. Inclusion of merely 2 wt% of graphene into an acrylic resin resulted in an increase of 522% and 242% in modulus and hardness, respectively.  相似文献   

17.
Silica monoliths embedded with high concentration of γ-Fe2O3 or TiO2 nanoparticles were prepared by a sol–gel procedure designed according to the inherent properties of oxide colloids. In the first step, highly dispersible oxide nanoparticles were produced using an in situ modification sol–gel strategy. Then, these particles were re-dispersed in silicon alkoxide-containing solution to form a stable colloidal solution. The hydrolysis and condensation reactions of alkoxide were catalyzed by an organic base (morpholine). Due to the large molecule size of morpholine, the electric double layer on the surface of colloidal particles was not compressed by the ionized morpholine molecules. The colloidal solution thus remained stable during the gelation process. Through this procedure, oxide nanoparticles could be immobilized homogeneously in the pores of a silica matrix, forming highly transparent and crack-free monoliths.  相似文献   

18.
以氧化石墨烯(GO)为基底,Fe(NO_3)_3·9H_2O、异丙醇、甘油为原料,通过溶剂热法和后续热处理过程2步合成了Fe_3O_4@C/rGO复合材料,实现了碳包覆的Fe_3O_4纳米粒子自组装形成的分级结构空心球在氧化石墨烯片上的原位生长。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒流充放电等手段分析了材料的物理化学性能与储锂性能。结果表明,该复合材料在5.0 A·g~(-1)的电流密度下,仍有437.7 mAh·g~(-1)的可逆容量,在1.0 A·g~(-1)下循环200圈后还有587.3 mAh·g~(-1)的放电比容量。这主要归因于还原态氧化石墨烯(rGO)对碳包覆Fe_3O_4分级空心球整体结构稳定性和导电性的提高。  相似文献   

19.
A composite of graphene–cuprous oxide (Cu2O) was prepared using copper acetate-adsorbed graphene oxide (GO) sheets as precursors. In this composite, in-situ formed Cu2O particles were derived from the adsorbed copper acetate which attached to graphene sheets and prevented the aggregation of the reduced graphene oxide sheets. The as-synthesized Cu2O crystals were cube-like particles distributed randomly on the sheets due to the template effect of GO, consequently forming a graphene–Cu2O cubes composite. A preliminary study on the electrochemical behavior of the graphene–Cu2O composite used as anode material for lithium ion batteries was carried out.  相似文献   

20.
Regularities of formation of nanocrystalline iron(III) oxides and oxyhydroxides via oxidation of iron(II) compounds in an alkaline pH range (pH ≥ 12) were studied using pH and E h measurements, chemical analysis, electron microscopy, and X-ray diffraction. When the molar ratio [OH]/[FeII] ∼ 2 (pH ∼ 12–12.5), the oxidation process yields cube-shaped magnetite Fe3O4 particles. An excess of an alkaline agent with an overstoichiometric concentration equal to or higher than 0.5 mol/L (pH ≥ 13.5) induces the formation of anisotropic particles of nanocrystalline goethite α-FeOOH over the entire range of the synthesis parameters studied. Reaction products (Fe3O4 and/or α-FeOOH) are formed immediately as the initial Fe(OH)2 starts oxidizing by the dissolution-oxidation-precipitation mechanism near the surface of Fe(OH)2 precursor particles. Carbonate ions considerably change the structure and shape of newly formed α-FeOOH particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号