首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density functional approach is applied to study the phase behavior of Lennard-Jones(12,6) fluid in pillared slit-like pores. Our focus is in the evaluation of phase transitions in fluid adsorbed in the pore of a fixed width. If the length of pillars is sufficiently large, we observe additional phase transitions of the first and second order due to the symmetry breaking of the distribution of chain segments and fluid species with respect to the slit-like pore center. Re-entrant symmetry changes and additional critical, critical end points and tricritical points then are observed. The scenario of phase changes is sensitive to the energy of fluid-solid interaction, the amount, and the length of the pillars. Quantitative trends and qualitative changes of the phase diagrams topology are examined depending on the values of these parameters.  相似文献   

2.
In this paper we investigate the phase behavior of a "simple" fluid confined to a chemically heterogeneous slit pore of nanoscopic width s(z) by means of Monte Carlo simulations in the grand canonical ensemble. The fluid-substrate interaction is purely repulsive except for elliptic regions of semiaxes A and B attracting fluid molecules. On account of the interplay between confinement (i.e., s(z)) and chemical decoration, three fluid phases are thermodynamically permissible, namely, gaslike and liquidlike phases and a "bridge phase" where the molecules are preferentially adsorbed by the attractive elliptic patterns and span the gap between the opposite substrate surfaces. Because of their lack of cylindrical symmetry, bridge phases can be exposed to a torsional strain 0相似文献   

3.
Grand canonical and canonical ensemble Monte Carlo simulation methods are used to study the structure and phase behavior of Lennard-Jones fluids confined between the parallel (100) planes of the face centered cubic crystal. Ultra thin slit pores of the width allowing for the formation of only two adsorbate layers are considered. It is demonstrated that the structure of adsorbed phases is very sensitive to the wall-wall separation and to the strength of the fluid-wall potential. It is also shown that the structure of low temperature (solid) phases strongly depends on the fluid density. In particular, when the surface field is sufficiently strong, then the high density phases may exhibit a domain wall structure, quite the same as found in monolayer films adsorbed at a single substrate wall. On the other hand, the weakening of the surface potential leads to the regime in which only the hexagonally ordered bilayer structure is stable. The phase diagrams for a series of systems are estimated. It is shown that, depending on the pore width and the temperature, the condensation leads to the formation of the commensurate or incommensurate phases. The incommensurate phases may have the domain-wall or the hexagonal structure depending on the pore width and the strength of the fluid-wall potential.  相似文献   

4.
Electrolytes confined by spherical, cylindrical, and slit-like charged nanopores are studied. Results for ionic distribution profiles, pressures of the confined fluid, and absorption isotherms are obtained through the hypernetted chain/mean spherical approximation (HNC/MSA) integral equations theory. In spherical and cylindrical geometries, an inward, non-monotonic behavior of the pressure is found as confinement increases, implying a negative compressibility. The pressure vs volume isotherms resemble liquid-vapor van der Waals-like phase transition diagrams. This effect is correlated with a charge separation inside a spherical pore previously reported (Phys. Rev. Lett., 79, 3656, 1997). Here, the mechanism of charge separation and negative compressibility are explored in detail. When compared with the slit-like pore pressure, important qualitative differences are found.  相似文献   

5.
Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the investigation of the "quantumness" of hydrogen at 77 K adsorbed in slit-like carbon nanopores up to 1 MPa. We find that classical simulations overpredict the hydrogen uptake in carbon nanopores due to neglect of the quantum delocalization. Such disagreement of both simulation methods depends on the slit-like carbon pore size. However, the differences between the final uptakes of hydrogen computed from both classical and quantum simulations are not large due to a similar effective size of quantum/classical hydrogen molecules in carbon nanospaces. For both types of molecular simulations, the volumetric density of stored energy in optimal carbon nanopores exceeds 6.4 MJ dm(-3) (i.e., 45 kg m(-3); Department of Energy target for 2010). In contrast to the hydrogen adsorption isotherms, we found a large reduction of isosteric enthalpy of adsorption computed from the quantum Feynman's path-integral simulations in comparison to the classical values at 77 K and pressures up to 1 MPa. Depression of the quantum isosteric enthalpy of adsorption depends on the slit-like carbon pore size. For the narrow pores (pore width H in [0.59-0.7] nm), the reduction of the quantum isosteric enthalpy of adsorption at zero coverage is around 50% in comparison to the classical one. We observed new phenomena called, by us, the quantum confinement-inducing polymer shrinking. In carbon nanospaces, the quantum cyclic polymers shrink, in comparison to its bulk-phase counterpart, due to a strong confinement effect. At considered storage conditions, this complex phenomenon depends on the size of the slit-like carbon nanopore and the density of hydrogen volumetric energy. For the smallest nanopores and a low density of hydrogen volumetric energy, the reduction of the polymer effective size is the highest, whereas an increase of the pore size and the density of hydrogen volumetric energy causes the polymer swelling up to a value slightly below the one computed from the bulk phase. Quantum confinement-inducing polymer shrinking is of great importance for realizing the potential of quantum molecular sieves.  相似文献   

6.
Phase equilibria of hydrogen bonding (HB) fluid confined in a slit pore with broken symmetry were investigated by the density functional theory incorporated with modified fundamental measure theory, where the symmetry breaking originated from the distinct interactions between fluid molecules and two walls of the slit pore. In terms of adsorption-desorption isotherms and the corresponding grand potentials, phase diagrams of HB fluid under various conditions are presented. Furthermore, through phase coexistences of laying transition and capillary condensation, the effects of HB interaction, pore width, fluid-pore interaction and the broken symmetry on the phase equilibrium properties are addressed. It is shown that these factors can give rise to apparent influences on the phase equilibria of confined HB fluid because of the competition between intermolecular interaction and fluid-pore interaction. Interestingly, a significant influence of broken symmetry of the slit pore is found, and thus the symmetry breaking can provide a new way to regulate the phase behavior of various confined fluids.  相似文献   

7.
We investigate the capillary condensation of two model fluid mixtures in slit-like pores, which exhibit different demixing properties in the bulk phase. The interactions between adsorbate particles are modeled by using Lennard-Jones (12,6) potentials and the adsorbing potentials are of the Lennard-Jones (9,3) type. The calculations are performed for different pore widths and at different concentrations of the bulk gas, by means of density functional theory. We evaluate the capillary phase diagrams and discuss their dependence on the parameters of the model. Our calculations indicate that a binary mixture confined to a slit-like pore may exhibit rich phase behavior.  相似文献   

8.
We investigate the phase behavior of an asymmetric binary liquid A-W mixture confined between two planar homogenous substrates (slit pore). Molecules of species W interact preferentially with the solid walls via a long-range potential. Assuming nearest-neighbor attractions between the liquid molecules, we employ a lattice-gas model and a mean-field approximation for the grand potential. Minimization of this potential yields the density profiles of thermodynamically stable phases for fixed temperature, chemical potentials of both species, pore width and strengths of attraction. This model is used to analyze experimental small-angle neutron-scattering (SANS) data on the microscopic structure of the binary system isobutyric acid (iBA)+heavy water (D2O) inside a mesoscopic porous matrix (controlled-pore glass of about 10 nm mean pore width). Confinement-independent model parameters are adjusted so that the theoretical liquid-liquid coexistence curve in the bulk matches its experimental counterpart. By choosing appropriate values of the pore width and the attraction strength between substrates and water we analyze the effect of confinement on the phase diagram. In addition to a depression of the liquid-liquid critical point we observe surface induced phase transitions as well as water-film adsorption near the walls. The temperature dependence of the structure of water-rich and iBA-rich phases of constant composition are discussed in detail. The theoretical predictions are consistent with results of the SANS study and assist their interpretation.  相似文献   

9.
Phase diagrams of chiral nematic liquid crystals are studied within the framework of a generalized Landau-Ginzburg-de Gennes theory. Using the parametrization of Grebel, Hornreich, and Shtrikman for the tensor order parameter Q, all relevant elastic terms are included for the helicoidal phase and the blue phases of chiral nematic liquid crystals up to fourth order in Q and its gradient ∂Q. The influence of the additional elastic terms on the phase diagrams of the chiral nematic phases is then investigated. The theory correctly describes the variation of the pitch with temperature and the induced biaxiality of the cholesteric phase. The results resolve the discrepancies encountered by Hornreich and Shtrikman in the comparison of experiment and theory. New features in the topology of the phase diagrams of blue phases, like re-entrant phase transitions, are predicted.  相似文献   

10.
Adsorption isoterms and capillary condensation in an open slit with walls decorated with arrays of pillars are examined using the density functional theory. Compared with the main substrate, the pillars can have the same or different parameters in the Lennard-Jones interaction potential between them and the fluid in the slit. The roughness of the solid surface, defined as the ratio between the area of the actual surface and the area of the surface free of pillars, is controlled by the height of the pillars. It is shown that the capillary condensation pressure first increases with increasing roughness, passes through a maximum, and then decreases. The amount of adsorbed fluid at constant volume of the slit has, in general, a nonmonotonic dependence on roughness. These features of adsorption and capillary condensation are results of increased surface area and changes in the fluid-solid potential energy due to changes in roughness.  相似文献   

11.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

12.
Abstract

Phase diagrams of chiral nematic liquid crystals are studied within the framework of a generalized Landau-Ginzburg-de Gennes theory. Using the parametrization of Grebel, Hornreich, and Shtrikman for the tensor order parameter Q, all relevant elastic terms are included for the helicoidal phase and the blue phases of chiral nematic liquid crystals up to fourth order in Q and its gradient ?Q. The influence of the additional elastic terms on the phase diagrams of the chiral nematic phases is then investigated. The theory correctly describes the variation of the pitch with temperature and the induced biaxiality of the cholesteric phase. The results resolve the discrepancies encountered by Hornreich and Shtrikman in the comparison of experiment and theory. New features in the topology of the phase diagrams of blue phases, like re-entrant phase transitions, are predicted.  相似文献   

13.
We present a density functional theory of nonuniform ionic fluids. This theory is based on the application of the electrostatic contribution to the free energy functional arising from mean spherical approximation for a bulk restricted primitive model and from the energy route bulk equation of state. In order to employ this functional we define a reference fluid and additional averaged densities, according to the approach introduced by Gillespie, Nonner and Eisenberg [J. Phys.: Condens. Matter 14, 12129 (2002)]. In the case of bulk systems the proposed theory reduces to the mean spherical approximation equation of state, arising from the energy route and thus it predicts the first-order phase transition. We use this theory to investigate the effects of confinement on the liquid-vapor equilibria. Two cases are considered, namely an electrolyte confined to the pore with uncharged walls and with charged walls. The dependence of the capillary evaporation diagrams on the pore width and on the electrostatic potential is determined.  相似文献   

14.
A microscopic density functional theory is used to investigate the adsorption of short chains on strongly attractive solid surfaces. We analyze the structure of the adsorbed fluid and investigate how the layering transitions change with the change of the chain length and with relative strength of the fluid-solid interaction. The critical temperature of the first layering transition, rescaled by the bulk critical temperature, increases slightly with an increase of the chain length. We have found that for longer chains the layering transitions within consecutive layers are shifted toward very low temperatures and that their sequence is finally replaced by a single transition.  相似文献   

15.
We report a density functional theory study of confinement induced solid/solid phase transitions in a thin film (modeled as methane) at T=0. The solid film is confined by two graphite surfaces represented by a mean-field potential. As the wall separation is varied the structure of the confined film changes, which influences its density and the solvation force. Using the directly accessible grand canonical potential density we determine the stable phases and calculate the exact location of the phase transitions. We observe a series of phases having square and triangular symmetry. At low wall separations we find zig-zag buckling and an asymmetric buckled phase, whose structure is consistent with the strongest buckling instability of a triangular monolayer predicted by Chou and Nelson [Phys. Rev. E 48, 4611 (1993)] but, to our knowledge, has not been observed as a stable phase before. We find that the two-dimensional order parameters Psi(4) (square symmetry) and Psi(6) (triangular symmetry) show unphysical behavior in the transition region between square and triangular symmetry. Thus, in the present model they fail to predict the right location of the phase transitions.  相似文献   

16.
Phase diagrams of crystals induced by irreducible representations with symmetry group \(L = \bar 43m\) (T d ) are constructed within the phenomenological theory of second-order phase transitions. A model of the Landau thermodynamic potential is studied, state equations of all symmetry-conditioned phases are obtained, and general conditions for their thermodynamic stability are formulated. Equations for the boundaries of phase areas and lines of phase transitions are obtained for the fourth order of expansion of the potential via components of the order parameter. Some types of the collapse of the multicritical point of the phase diagram for the eighth order of potential expansion are studied using computer calculations. The possible existence of phase diagrams that contain one or more triple points and areas of existence of three and four phases is shown for the first time for the potentials with the above symmetry. Examples are given of crystals that undergo phase transitions in the considered symmetry of the order parameter.  相似文献   

17.
The phase behavior of short-chain fluids in slit pores is investigated by using a nonlocal-density-functional theory that takes into account the effects of segment size, chain connectivity, and van der Waals attractions explicitly. The layering and capillary condensation/evaporation transitions are examined at different chain length, temperature, pore width, and surface energy. It is found that longer chains are more likely to show hysteresis loops and multilayer adsorptions along with the capillary condensation and evaporation. Decreasing temperature favors the inclusion of layering transitions into the condensation/evaporation hysteresis loops. For large pores, the surface energy has relatively small effect on the pressures of the capillary condensation and evaporation but affects significantly on the layering pressures. It is also observed that all phase transitions within the pore take place at pressures lower than the corresponding bulk saturation pressure. The critical temperature of condensation/evaporation is always smaller than that of the bulk fluid. All coexistence curves for confined phase transitions are contained within the corresponding bulk vapor-liquid coexistence curve. As in the bulk phase, the longer the chain length, the higher are the critical temperatures of phase transitions in the pore.  相似文献   

18.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

19.
We propose a density functional theory to describe adsorption of Lennard-Jones fluid in pillared slit like pores. Specifically, the pillars are built of chains that are bonded by their ends to the opposite pore walls. The approach we propose combines theory of quenched-annealed systems and theory of nonuniform fluids involving chain molecules. We compare the results of theoretical predictions with grand canonical ensemble Monte Carlo simulations and compute theoretical capillary condensation phase diagrams for several model systems.  相似文献   

20.
We present a simple and highly adaptable method for simulating coarse-grained lipid membranes without explicit solvent. Lipids are represented by one head bead and two tail beads, with the interaction between tails being of key importance in stabilizing the fluid phase. Two such tail-tail potentials were tested, with the important feature in both cases being a variable range of attraction. We examined phase diagrams of this range versus temperature for both functional forms of the tail-tail attraction and found that a certain threshold attractive width was required to stabilize the fluid phase. Within the fluid-phase region we find that material properties such as area per lipid, orientational order, diffusion constant, interleaflet flip-flop rate, and bilayer stiffness all depend strongly and monotonically on the attractive width. For three particular values of the potential width we investigate the transition between gel and fluid phases via heating or cooling and find that this transition is discontinuous with considerable hysteresis. We also investigated the stretching of a bilayer to eventually form a pore and found excellent agreement with recent analytic theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号