首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Qi H  Zhang Y  Peng Y  Zhang C 《Talanta》2008,75(3):684-690
A homogeneous electrogenerated chemiluminescence (ECL) immunoassay for human immunoglobulin G (hIgG) has been developed using a N-(aminobutyl)-N-ethylisoluminol (ABEI) as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode (PIGE). ECL emission was electrochemically generated from the ABEI-labeled anti-hIgG antibody and markedly increased in the presence of hIgG antigen due to forming a more rigid structure of the ABEI moiety. The concentration of hIgG antigen was determined by the increase of ECL intensity at a gold nanoparticles modified PIGE. It was found that the ECL intensity of ABEI in presence of hydrogen peroxide was dramatically enhanced at gold nanoparticles modified PIGE in neutral aqueous solution and the detection limit of ABEI was 2 x 10(-14)mol/L (S/N=3). The integral ECL intensity was linearly related to the concentration of hIgG antigen from 3.0 x 10(-11) to 1.0 x 10(-9)g/mL with a detection limit of 1 x 10(-11)g/mL (S/N=3). The relative standard deviation was 3.1% at 1.0 x 10(-10)g/mL (n=11). This work demonstrates that the enhancement of the sensitivity of ECL and ECL immunoassay at a nanoparticles modified electrode is a promising strategy.  相似文献   

2.
基于稀土Eu(Ⅲ)掺杂的类普鲁士蓝膜修饰的铂电极为工作电极,建立了测定羟考酮的毛细管电泳-电致化学发光分析方法。考察了检测电位、运行缓冲溶液的酸度及浓度、分离电压、进样条件等对电泳分离效果及检测灵敏度的影响。在最佳的实验条件下,羟考酮可在4 min内得到分离,其ECL强度值与羟考酮的质量浓度在7.0×10-2~7.0μg/mL和7.0~70.0μg/mL范围内呈良好的线性关系,检出限为4.2×10-2μg/mL(3σ),峰高和迁移时间的相对偏差分别为3.6%和0.48%(n=6)。方法用于兔血浆中羟考酮含量的检测,加标回收率在99.7%~101.0%之间。  相似文献   

3.
Du N  Liao L  Xiao Y  Xiao X  Zhao Z  Lin Y 《Analytica chimica acta》2011,684(1-2):121-125
A highly sensitive and selective electrochemiluminescent (ECL) biosensor for the determination of adenosine was developed. Single DNA (capture DNA) was immobilized on the gold electrode through Au-thiol interaction at first. Another DNA modified with tris(2,2'-bipyridyl) ruthenium(II)-doped silica nanoparticles (Ru-SNPs) that contained adenosine aptamer was then modified on the electrode surface through hybridizing with the capture DNA. In the presence of adenosine, adenosine-aptamer complex is produced rather than aptamer-DNA duplex, resulting with the dissociation of Ru-SNPs-labeled aptamer from the electrode surface and the decrease in the ECL intensity. The decrease of ECL intensity has a direct relationship with the logarithm of adenosine concentration in the range of 1.0×10(-10) to 5.0×10(-6)molL(-1). The detection limit of the proposed method is 3.0×10(-11)molL(-1). The existence of guanosine, cytidine and uridine has little interference with adenosine detection, demonstrating that the developed biosensor owns a high selectivity to adenosine. In addition, the developed biosensor also demonstrates very good reusability, as after being reused for 30 times, its ECL signal still keeps 91% of its original state.  相似文献   

4.
朱化雨  张利  陈怀成  闫圣娟 《分析化学》2012,40(10):1549-1554
利用巯基乙胺将合成的金纳米粒子氨基化;基于纳米粒子负载羧基化的联吡啶钌和巯基DNA制得电化学发光信号探针;采用酶循环信号放大技术,获得大量含新增DNA的溶液来捕获信号探针;以金电极为载体,将巯基DNA自组装到电极表面,依次杂交互补DNA和信号探针,构建电化学发光生物传感器.在优化的条件下,此传感器对凝血酶具有良好的响应,在3.0× 10-13~6.0×10-11 mol/L范围内,凝血酶的浓度与发光强度呈良好的线性关系,检出限为1.8× 10-13 mol/L(3a).采用酶切循环放大技术制备的生物传感器具有灵敏度高,选择性和重现性良好等特点.  相似文献   

5.
分子印迹固相萃取-电化学发光检测牛奶中氯霉素   总被引:1,自引:0,他引:1  
基于氯霉素(CAP)能强烈抑制Ru(bpy)32+/TPA体系的电化学发光(ECL)信号,结合分子印迹固相萃取(MISPE)样品前处理技术,建立了一种高灵敏度检测牛奶中CAP残留量的方法。在最优实验条件下,体系的ECL猝灭值ΔI与CAP浓度呈良好线性关系,线性范围为1.0×10-13~1.0×10-11g/mL,检测限为3×10-12g/mL,精密度和准确度好,可用于牛奶中CAP残留量的测定。  相似文献   

6.
基于反相微乳液纳米粒子合成方法制备了Ag/SiO2/Chitosan(壳聚糖)复合纳米粒子. 采用透射电子显微镜、 电化学方法和紫外-可见吸收光谱表征了复合纳米粒子的性质. 结果表明, 该复合纳米粒子具有导电性、 阴离子通道效应和对六价铬的吸附效应. 与修饰电极化学发光方法相结合, 建立了一种测定六价铬的新方法. 在最佳实验条件下, 增敏电化学发光信号强度与六价铬的浓度在2.0×10-12 ~1.0×10-10 g/mL范围内呈线性关系, 对六价铬的检出限为2×10-13 g/mL.  相似文献   

7.
以稀土铕离子(Ⅲ)掺杂的类普鲁士蓝膜(Eu-PB)修饰铂电极为工作电极,采用毛细管电泳-电致化学发光法(CE-ECL)对土壤中的多抗霉素B进行检测.分别对毛细管电泳分离条件和电致化学发光检测条件进行优化,并探讨了体系产生电致化学发光的机理.在优化实验条件下,多抗霉素B可在4 min内得到分离,其ECL强度值与多抗霉素B...  相似文献   

8.
M Zhou  Y Li  C Liu  Y Ma  J Mi  S Wang 《Electrophoresis》2012,33(16):2577-2583
A CE electrochemiluminescence (CE-ECL) method for simultaneous determination of lappaconitine hydrobromide (LH) and isopropiram fumarate (IF) has been first established, with a chemically modified platinum electrode by europium (III)-doped Prussian blue analogue film as a working electrode. The conditions for CE separation and ECL detection are discussed and optimized in detail. It has been proved that 20 mmol/L phosphate buffer (pH 8.5) containing 5% (v/v) ACN and 0.17 mol/L SDS could achieve the most favorable resolution, and the high sensitivity of detection was obtained by maintaining the detection potential at 1.23 V. Under optimized conditions, a baseline separation for the two analytes was achieved within 6 min, and the standard curves were linear in the range of 1.0×10(-7) ~ 5.0 × 10(-5) g/mL for LH and 4.0 × 10(-8) ~ 1.0 × 10(-5) g/mL for IF with the detection limits (3σ) of 6.6 × 10(-8) g/mL for LH and 3.7 × 10(-8) g/mL for IF, respectively. The precisions of intra- and interday measurements for LH and IF were less than 4.21 and 2.61%, respectively. The applicability of the proposed method was illustrated in the determination of LH and IF in rabbit plasma with recoveries between 95.6 and 103.0%.  相似文献   

9.
L-半胱氨酸修饰金电极电化学发光法测定罗红霉素   总被引:2,自引:1,他引:1  
在裸金电极上制备了L-半胱氨酸自组装膜修饰电极(L-Cys-Au/SAM/CME).考察了联吡啶钌和罗红霉素在此修饰电极上的电化学及其发光行为.结果表明,此修饰电极表现出了很好的电化学活性和电化学发光(ECL)响应.基于罗红霉素的存在可增大了联吡啶钌的发光强度,建立了测定罗红霉素片的电化学发光分析方法.在最佳实验条件下,罗红霉素浓度在1.0×10-7~1.0×10-4 mol/L范围内与其相对发光强度呈线性关系,其线性回归方程为I=2×107C+384.02, r=0.9977; 检出限(S/N=3)为1.0×10-7 mol/L.连续测定1.8×10-5 mol/L罗红霉素10次,发光强度的RSD为1.93% , 表明此修饰电极具有较好的重现性,并将本方法用于罗红霉素片剂的检测.  相似文献   

10.
基于磷酸可待因对联吡啶钌在该电极上的电化学及其发光行为的增敏作用,建立了一种直接测定磷酸可待因的电化学发光新方法。在最佳实验条件下,磷酸可待因在1.0×10-4~4.0×10-6mol/L和4.0×10-6~2.0×10-7mol/L与相对发光强度呈线性关系,检出限为1.0×10-7mol/L(S/N=3)。连续测定4.0×10-7mol/l磷酸可待因5次,发光强度的RSD为2.7%。方法用于模拟尿样中磷酸可待因的测定,结果满意。  相似文献   

11.
The electrochemiluminescent (ECL) behavior of lucigenin on a multiwall carbon nanotubes modified glassy carbon electrode (MWNT/GCE) during anodic scanning was studied. A strong and stable anodic ECL signal was found on MWNT modified electrode, which results from the oxidation reaction between lucigenin and the oxidation production of OH-. The effects of electrode materials, pH and scan rate on the ECL intensity were studied, and the possible ECL mechanism was also proposed. Under the optimized conditions, the ECL intensity was found to be linear with concentration of lucigenin in the range of 5.0 × 10?7–5.0 × 10?6 mol/L with a detection limit of 2.0 × 10?7 mol/L. Superoxide dimutase (SOD) was found to be able to inhibit this ECL system, based on which a sensitive ECL methods for detection of SOD had been established.  相似文献   

12.
CdSe量子点修饰电极电化学发光法测定叶酸   总被引:1,自引:0,他引:1  
制备了水溶性的CdSe量子点,用紫外光谱和荧光光谱对其进行了表征.并将其修饰到金电极的表面,得到了CdSe量子点修饰电极(CdSe/GE),研究了其电化学发光性质.结果表明:在强碱介质中,CdSe/GE对鲁米诺电化学发光具有增敏作用,在此发光体系中加入叶酸后,会产生进一步增强的电化学发光信号,由此建立了电化学发光检测叶酸的新方法.考察了缓冲溶液pH值、鲁米诺的浓度和扫速等条件对电化学发光强度的影响.在优化的实验条件下,叶酸在1×10~(-13)~1.1×10~(-4) mol/L浓度范围内与相对发光强度(ΔI)呈现良好的线性关系,检测限为6.0×10~(-14) mol/L(S/N=3),并用于市售叶酸片剂中叶酸的测定,得到令人满意的实验结果.  相似文献   

13.
Zhao P  Cao G  Zhou L  Liu Q  Guo M  Huang Y  Cai Q  Yao S 《The Analyst》2011,136(9):1952-1956
Tris(2,3-dibromopropyl) isocyanurate (TBC) is a heterocyclic hexabrominated flame retardant, which cannot be degraded even over a long time and may be a potential environmental pollutant. In this paper, TBC is for the first time as far as we know determined by silver nitrate-enhanced electrochemiluminescence (ECL) using a gold nanoparticles (AuNPs)-modified gold electrode. In our experiments, TBC was found to have the characteristics of increasing the ECL intensity of Ru(bpy)(3)(2+), and the ECL signal was proportional to the concentration of TBC. Based on this, we have successfully developed a novel, fast and sensitive method for the analysis of TBC. The main influencing factors including the volume ratio of acetonitrile and water, and the concentration of Ru(bpy)(3)(2+) were investigated in detail. Compared with using a bare gold electrode in MeCN without AgNO(3), the limit of detection is remarkably lowered by 20 times and the linear range is expanded by 5 times by using the AuNPs-modified gold electrode and AgNO(3). Under the optimal conditions, a limit of detection of 5.0 × 10(-8) M (S/N = 3) is achieved with a linear range of 1.0 × 10(-7) to 5.0 × 10(-5) M. The mechanism of the ECL enhancement of the system is also investigated.  相似文献   

14.
In this paper, an ECL detection system equipped with an electrically heating controlled cylindrical microelectrode (HME) was used to study the ECL behavior of lucigenin. The ECL intensity of lucigenin would be increased at elevated electrode temperature but the noise had not been increased. It was found that ECL intensity at higher temperature of electrode surface (80 °C) was more than two magnitudes stronger than that at the room temperature (22 °C). The detection limit for ECL of lucigenin on a HME is much lower than that on an electrode without heating, based on which, it is possible to establish a more sensitive method for measurement of ECL by using a HME. The heating of electrode has been used to renew the electrode, which avoid the tedious work for refreshing the electrode surface. The reproducibility of lucigenin ECL system at HME is satisfactory.  相似文献   

15.
Yu Z  Wei X  Yan J  Tu Y 《The Analyst》2012,137(8):1922-1929
With TiO(2) nanoparticles as carrier, a supported nano-material of Au atomic cluster/TiO(2) nano-hybrid was synthesized. It was then modified onto the surface of indium tin oxide (ITO) by Nafion to act as a working electrode for exciting the electrochemiluminescence (ECL) of luminol. The properties of the nano-hybrid and the modified electrode were characterized by XRD, XPS, electronic microscopy, electrochemistry and spectroscopy. The experimental results demonstrated that the modification of this nano-hybrid onto the ITO electrode efficiently intensified the ECL of luminol. It was also revealed that the ECL intensity of luminol on this modified electrode showed very sensitive responses to oxygen and hydrogen peroxide. The detection limits for dissolved oxygen and hydrogen peroxide were 2 μg L(-1) and 5.5 × 10(-12) M, respectively. Besides the discussion of the intensifying mechanism of this nano-hybrid for ECL of luminol, the developed method was also applied for monitoring dissolved oxygen and evaluating the scavenging efficiency of reactive oxygen species of the Ganoderma lucidum spore.  相似文献   

16.
A simple, selective and sensitive “signal-on” electrogenerated chemiluminescence (ECL) biosensing method was developed for matrix metalloproteinase 2 (MMP-2). Ru(bpy)32+, gold nanoparticles (AuNPs) and Nafion were modified onto glassy carbon electrode (GCE) to form Ru(bpy)32+/AuNPs/Nafion/GCE as sensitive ECL platform and then ferrocene (Fc) labeled peptide was assembled onto the modified electrode to form ECL biosensing platform. The ECL intensity increased when the ECL biosensing electrode reacted with MMP-2 because of MMP-2-induced cleavage of Fc labeled peptide. The ECL method was applied to determine MMP-2 with detection limit of 0.3 ng/mL and one-step recognition, which is promising for point-of-care test of protease.  相似文献   

17.
The electrochemiluminescent (ECL) behavior of lucigenin on a multi-wall carbon nanotube/nano-Au modified glassy carbon electrode (MWNT/nano-Au/GCE) was studied in this paper. Compared with the bare GCE, the ECL intensity of lucigenin can be greatly enhanced at MWNT/nano-Au/GCE. Based on the fact that superoxide dimutase (SOD) could obviously inhibit the ECL of lucigenin at MWNT/nano-Au/GCE, a sensitive ECL biosensor for determination of SOD was developed with a wide linear range of 5.0 × 10−8–5.0 × 10−6 mol/L with detection limit of 2.5 × 10−8 mol/L.  相似文献   

18.
纳米TiO2与NaOH溶液作用能产生化学发光辐射,在表面活性剂十六烷基三甲基溴化铵(CTAB)的存在下,核黄素的加入能增强纳米TiO2-NaOH溶液的化学发光强度。基于此,构建了纳米TiO2-NaOH溶液化学发光新体系,建立了纳米TiO2-NaOH-核黄素体系检测核黄素的化学发光新方法。在优化实验条件下,核黄素质量浓度在5.0×10-6~3.5×10-4g/mL范围内与化学发光强度呈良好的线性关系,检出限为3.0×10-6g/mL,对2.5×10-5g/mL的核黄素进行11次平行测定,相对标准偏差为2.9%。该方法用于维生素B2片剂的测定,其结果与药典方法测得一致。该文同时对化学发光反应的机理进行了初步探讨。  相似文献   

19.
The electrogenerated chemiluminescence (ECL) behavior of lucigenin in ethanol solution at a polycrystalline gold electrode was studied under conventional cyclic voltammetric conditions. Compared with the ECL of lucigenin in aqueous solution, one cathodic ECL peak (ECL‐1 at ?0.98 V versus SCE) with a shoulder (S1 at ?0.42 V) and three new anodic ECL peaks (ECL‐2 at ?0.53 V, ECL‐3 at 0.20 V, and ECL‐4 at 0.51 V) were observed, respectively, on the curve of ECL intensity versus potential. The effects of initial potential scan direction, the presence of O2 or N2, potential scan ranges, supporting electrolyte and the concentration of lucigenin on these ECL peaks were examined. The electrochemistry of lucigenin in ethanol solution was also studied. The emitter of all ECL peaks was identified as N‐methylacridone (NMA) by analyzing the ECL spectra. The mechanism for these ECL peaks is proposed to be due to the reactions of lucigenin and its redox products such as Luc and DBA with dissolved oxygen or O2 electrogenerated by the dissolved oxygen at different potentials. The formation of new anodic ECL peaks in ethanol solution is due to longer lifetime of superoxide ions and easier electro‐oxidation of DBA in nonaqueous solution, revealing that the solvent plays an important role in the lucigenin ECL reactions.  相似文献   

20.
本文基于适配体识别和生物条形码放大策略,以MCF-7细胞和粘蛋白(MUC1)为目标物,MUC1的特异性适配体(rcDNA)为分子识别物质,Ru(phen)32+为信号物质,rcDNA通过巯基自组装于金电极表面作为传感界面,发卡DNA (hpDNA)和rcDNA通过巯基自组装在金纳米粒子(AuNP)表面合成的hpDNA/...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号