首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴润衡  邹杰涛 《力学季刊》2000,21(3):331-336
本文研究质量非完整系统的Lie对称性逆问题:根据已知积分求相应的Lie对称性,具体研究了受Chetaev型和非Chetaev型非完整约束的变质量系统的Lie对称性逆问题。首先,根据Lie对称所满足的确定方程和限制方程,给出Lie对称的结构方程和相应的守恒量及其表达式;其次,由已知守恒量求出相应的Noether对称性;最后,根据Noether对称性求出相应的Lie对称性。  相似文献   

2.
具有可积微分约束的力学系统的Lie对称性   总被引:7,自引:0,他引:7  
梅凤翔 《力学学报》2000,32(4):466-472
研究具有可积微分约束的力学系统的Lie对称性与守恒量。采用两种方法:一是用不可积微分约束系统的方法;另一是用积分后降阶系统的方法,研究两种方法之间的关系。  相似文献   

3.
傅景礼  陆晓丹  项春 《力学学报》2022,54(6):1680-1693
爬壁机器人的运动是一种模仿壁虎爬行的运动, 爬壁机器人的运动可分解为四肢带动身体的运动, 先前的研究都是基于牛顿力学的方法. 本文采用Lagrange 力学的方法建立爬壁机器人系统的运动方程, 并运用Lie群分析方法建立该系统的Noether对称性理论, 得出爬壁机器人的运动规律. 首先, 给出非完整爬壁机器人系统的动能、势能和Lagrange函数以及所受的非完整约束, 从而建立了非完整爬壁机器人系统的Lagrange方程; 其次, 引入关于时间和广义坐标的无限小变换, 提出了非完整爬壁机器人系统的Hamilton作用量和Hamilton作用量的基本变分公式; 第三, 给出爬壁机器人系统 Noether对称性变换和广义准对称变换的定义, 判据和存在的Noether守恒量, 并提出了非保守完整系统和非保守非完整爬壁机器人系统的Noether定理; 最后, 以圆锥面上爬壁机器人为例, 对给出的守恒量直接进行积分给出圆锥面上爬壁机器人整体运动的精确解和四肢运动的数值解, 发现了该爬壁机器人的运动规律, 很好地验证了非完整爬壁机器人系统的Noether对称性理论. 本文的研究为Lie群分析方法应用于其他复杂的机器人系统以及柔性机器人系统的对称性求解提出了一种新的对称性求解方法.   相似文献   

4.
A special Lie symmetry and Hojman conserved quantity of the Appell equations for a Chetaev nonholonomic system are studied. The differential equations of motion and Appell equations of the Chetaev nonholonomic system are established. Under the special Lie symmetry group transformations in which the time is invariable, the determining equation of the special Lie symmetry of the Appell equations for a Chetaev nonholonomic system is given, and the expression of the Hojman conserved quantity is deduced directly from the Lie symmetry. Finally, an example is given to illustrate the application of the results.  相似文献   

5.
非Четаев型非完整系统的Lie对称性与守恒量   总被引:29,自引:0,他引:29  
研究非Четаев型非完整系统的Lie对称性.首先利用微分方程在无限小变换下的不变性建立Lie对称所满足的确定方程和限制方程,给出结构方程并求出守恒量;其次研究上述问题的逆问题:根据已知积分求相应的Lie对称性;最后举例说明结果的应用.  相似文献   

6.
There exists an Ehresmann connection on the fibred constrained sub-manifold defined by Pfaffian differential constraints. It is proved that curvature of the connection is closely related to the d-σ commutation relation in the classical nonholonomic mechanics. It is also proved that conditions of complete integrability for Pfaffian systems in Frobenius sense are equivalent to the three requirements upon the conditional variations in the classical calculus of variations: (1) the variations belong to the constrained manifold, (2) variational operators commute with differential operators, (3) variations satisfy the Chetaev's conditions. Thus this theory verifies the conjecture or experience of researchers of mechanics on the integrability conditions in terms of variation calculus. The project supported by the National Natural Science Foundation of China  相似文献   

7.
非完整约束系统几何动力学研究进展:Lagrange理论及其它   总被引:1,自引:1,他引:0  
近10年来, 非完整力学的发展主要集中在两个相互关联的方向上, 一个是非完整运动规划, 另一个则是非完整约束系统的几何动力学, 这两个研究方向都充分地利用了现代几何学, 如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论, 包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学, 文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外, 简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.   相似文献   

8.
For a weakly nonholonomic system, the Lie symmetry and approximate Hojman conserved quantity of Appell equations are studied. Based on the Appell equations for a weakly nonholonomic system under special infinitesimal transformations of a group in which the time is invariable, the definition of the Lie symmetry of the weakly nonholonomic system and its first-degree approximate holonomic system are given. With the aid of the structure equation that the gauge function satisfies, the exact and approximate Hojman conserved quantities deduced directly from the Lie symmetry are derived. Finally, an example is given to study the exact and approximate Hojman conserved quantity of the system.  相似文献   

9.
The weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system are studied. Appell equations for a weakly nonholonomic system are established and the definition and the criterion of the special Mei symmetry of the system are given. The structure equation of the special Mei symmetry for a weakly nonholonomic system and approximate conserved quantity deduced from the special Mei symmetry of the system are obtained. Finally, special approximate conserved quantity issues of Appell equations for a two freedom degrees weakly nonholonomic system are investigated using the results of this paper.  相似文献   

10.
《力学快报》2021,11(5):100286
We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities. Firstly, the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle. Secondly, the definitions of Mei symmetry on time scales are given and its criterions are deduced. Finally, Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems, time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved, and new conserved quantities of above systems are obtained. Results are illustrated with two examples.  相似文献   

11.
In this paper,Routh’s equations for the mechanical systems of the variable masswith nonlinear nonholonomic constraints of arbitrary orders in a noninertial referencesystem have been deduced not from any variational principles,but from the dynamicalequations of Newtonian mechanics.And then again the other forms of equations fornonholonomic systems of variable mass are obtained from Routh’s equations.  相似文献   

12.
On the Noether symmetry and Lie symmetry of mechanical systems   总被引:1,自引:0,他引:1  
The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold. The project supported by the National Natural Science Foundation of China (19972010)  相似文献   

13.
The conformal invariance and conserved quantity for the nonholonomic system of non-Chetaev’s type are studied. Firstly, by introducing a one-parameter infinitesimal transformation group and its infinitesimal generator vector, the definition of conformal invariance and determining equation for the holonomic system which corresponds to a nonholonomic system of non-Chetaev’s type are provided, and the relationship between the system’s conformal invariance and Lie symmetry are discussed. Secondly, the conformal invariance of weak and strong Lie symmetry for the nonholonomic system of non-Chetaev’s type is given using restriction equations and additional restriction equations. Thirdly, the system’s corresponding conserved quantity is derived with the aid of a structure equation that the gauge function satisfies. Lastly, an example is given to illustrate the application of the method and its result.  相似文献   

14.
This paper is concerned with the dynamics of a mechanical system subject to nonintegrable constraints. In the first part, we prove the equivalence between the classical nonholonomic equations and those derived from the nonholonomic variational formulation, proposed by Kozlov in [10–12], for a class of constrained systems with constraints transverse to a foliation. This result extends the equivalence between the two formulations, proved for holonomic constraints, to a class of linear nonintegrable ones. In the second part, we derive the nonholonomic variational reduced equations for a constrained system with symmetry and constraint transverse to a principal bundle fibration, using a reduction procedure similar to the one developed in [5]. The resulting equations are compared with the nonholonomic reduced ones through mechanical examples.  相似文献   

15.
Reduction of some classical non-holonomic systems with symmetry   总被引:2,自引:0,他引:2  
Two types of nonholonomic systems with symmetry are treated: (i) the configuration space is a total space of a G-principal bundle and the constraints are given by a connection; (ii) the configuration space is G itself and the constraints are given by left-invariant forms. The proofs are based on the method of quasicoordinates. In passing, a derivation of the Maurer-Cartan equations for Lie groups is obtained. Simple examples are given to illustrate the algorithmical character of the main results.  相似文献   

16.
For a nonholonomic system of Chetaev’s type, the conformal invariance and the conserved quantity of Mei symmetry for Appell equations are investigated. First, under the infinitesimal one-parameter transformations of group and the infinitesimal generator vectors, Mei symmetry and conformal invariance of differential equations of motion for the system are defined, and the determining equation of Mei symmetry and conformal invariance for the system are given. Then, by means of the structure equation to which the gauge function is satisfied, the Mei-conserved quantity corresponding to the system is derived. Finally, an example is given to illustrate the application of the result.  相似文献   

17.
I.IntroductionTheinverseproblemofdynamicsisoneoftheimportantsubjectsinmechanics.In1977,Szebehelysetforthaninverseproblemforthedeterminationofthet'orcefunctiontoamaterialpointintheplanefromparametricfamilyoftrajectories,andobtainedalinearfirstorderpartialdifferentialequationfortheforcefunction.Later,Erdil'l,MellsandPirast=l,MellsandBorgherol'l,BoilsandMertnsl4]extendedSzebehely'sproblemtoboththreeandndimensionalholonomicsystem.Recently,theauthorandProfessorMetFengxiangl'1studiedtheSzebehe…  相似文献   

18.
19.
This paper presents a new and simplified set of explicit equations of motion for constrained mechanical systems. The equations are applicable with both holonomic and nonholonomic systems and the constraints may, or may not, be ideal. It is shown that this set of equations is equivalent to governing equations developed earlier by others. The connection of these equations with Kane's equations is discussed. It is shown that the developed equations are directly applicable with controlled systems where the controlling forces and moments may be subject to constraints. Finally, a procedure is presented for determining which control force systems are equivalent. Examples are presented to demonstrate the advantages, features, and range of application of the equations.  相似文献   

20.
C. Di Nucci 《Meccanica》2014,49(12):2829-2838
This paper deals with the theoretical derivation of the conservation equations for single phase flow in a porous medium. The derivation is obtained within the framework of the continuum mechanics and classical thermodynamics. The adopted procedure provides the conservation equations of mass, momentum, mechanical energy, total energy, internal energy, entropy, temperature, enthalpy, Gibbs free energy and Helmholtz free energy. The obtained results highlight the connection between the basic equations of fluid mechanics and of fluid flow in porous media, as well as the restrictions and the limitations of Darcy’s law and Richards’ equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号