首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水热法α-Al2O3自发结晶和形态控制   总被引:3,自引:0,他引:3  
本文研究了高温高压水热法合成α-Al2O3晶体的形态特征.在水热条件下,α-Al2O3的晶体形态和合成温度、矿化剂浓度有密切关系.当KOH浓度和温度较低时(如0.1M KOH,390℃),显露c{0001}、a{11-20}、r{01-12}、n{11-23}晶面.随着矿化剂浓度和温度的提高,晶体r{01-12}和n}11-23}面的显露面积越来越小,直到完全消失(如2MKOH,400℃),晶体只显露底面c{0001}、和柱面a{11-20},呈六棱柱形.  相似文献   

2.
水热法合成α-Al2O3晶体   总被引:14,自引:9,他引:5  
本文研究了不同矿化剂,不同温度对水热条件下合成α-Al2O3晶体的大小、形貌和晶体质量的影响.发现在矿化剂浓度为0.1M KOH和1M KBr条件下,填充度为35;,温度为380℃时Al(OH)3只转化成薄水铝石,无α-Al2O3晶体生成;388℃时只是部分转化成α-Al2O3;在395℃以上时完全能转化成α-Al2O3,晶体形状为六棱柱形.在矿化剂浓度为1M KOH时,填充度35;,温度为380℃时,即有部分Al(OH)3转化成α-Al2O3,390℃以上完全转化成α-Al2O3,晶面主要显露菱面.  相似文献   

3.
水热法合成纯立方铁锰矿型In2O3晶体   总被引:3,自引:1,他引:2  
本文采用水热法合成了纯立方铁锰矿相In2O3晶体.以3M KOH为矿化剂,填充度35;,压力40 MPa,温度430 ℃,反应24 h,加入适量的In2O3立方铁锰矿相和金刚砂相混晶原料,经过水热反应,In2O3原料经过二次结晶全部转化成纯立方铁锰矿相,其中的金刚砂相消失,并长成几十微米多面体晶体.改用In(OH)3作前驱物,在同样的水热条件下,生成纯立方铁锰矿相,晶体成立方形,显露{002}、{020}、{200}晶面.  相似文献   

4.
水热法合成矾土基α-Al2O3纳米粉   总被引:1,自引:1,他引:0  
以650 ℃轻烧后的高铝矾土为原料,利用水热法合成了以α-Al2O3为主晶相的纳米粉.研究了晶种、矿化剂、水热温度和水热时间对产物中α-Al2O3含鼍、晶粒度大小的影响,采用XRD、SEM分析了纳米粉体的物相与形貌.结果表明,加入3;质量分数的晶种在380℃水热处理2 h后,合成出晶粒度为28 nm、以α-Al2O3为主晶相的α-Al2O3纳米粉,其形貌呈圆球状,二次粒度为190 nm.  相似文献   

5.
以微孔α-Al2O3瓷板为支撑体,通过负载晶种水热反应合成了NaA沸石分子筛膜,利用XRD和FESEM表征了膜的相组成及微观结构,比较研究了动态和静态两种晶化体系对分子筛成膜的影响机制.将Na2SiO3·9H2O、NaAlO2和去离子水按n(Na2O):n(SiO2):n(Al2O3):n(H2O)= 3:2:1:148配制溶液,于95 ℃水热反应2 h制得晶种;再用Na2SiO3·9H2O、Al2(SO4)3·18H2O、NaOH及去离子水作起始物,按nNa2O:nSiO2:nAl2O3:nH2O=7.5:2:1:600配制膜晶化液,分别将负载晶种的支撑体置于动态(190 r/min搅动)和静态的晶化液中,于97 ℃下晶化4 h合成NaA沸石分子筛膜.结果表明:静态体系形成的膜主要由晶种和分子筛晶粒沉积构成,结构疏松且缺陷较多;而动态体系形成的膜则是由晶种交织生长而成,膜层薄、结晶度高、均匀连续,且成膜过程易于有效控制.  相似文献   

6.
本文采用水热法,以SnCl4·5H2O为前驱物,在180℃,填充度为68;,反应时间8h,强酸环境条件下合成了SnO2纳米金红相晶体,直径约为5~10nm,长30~100nm.加入一定量的NaOH,调节溶液pH值为强碱性(pH=11),同样条件下也合成了SnO2金红相纳米柱晶体,长200nm、直径10~20nm.提高水热反应的温度为430℃,矿化剂为3mol/L NaOH,反应时间24h,合成了亚微米金红相SnO2晶体,最大线度为300nm.  相似文献   

7.
水热法合成Mnx Zn1-xO微晶体   总被引:1,自引:1,他引:0  
本文采用水热法合成了MnxZn1-xO晶体,水热反应条件为3mol·L-1KOH作为矿化剂,填充度为35;,温度为430℃,在Zn(OH)2中添加一定量的MnO2为前驱物,反应时间为24h.通过X射线能谱仪测量了晶体中的Mn含量,随着前驱物中MnO2含量的增加,晶体中Mn的原子百分比随着增加,Mn最大原子百分比含量超过了2;,晶体的形貌具有纯ZnO晶体的六角柱形特征.显露柱面m{1010}、锥面p{1011}、负极面O面{0001}和正极面{0001}.晶体直径为50~200μm,高度为20~100μm.  相似文献   

8.
以高锰酸钾(KMnO4)和硫酸铵((NH4)2SO4)为主要原料,在150℃反应16h,水热法生长了棒状MnOOH晶体,然后以合成的棒状MnOOH晶体为前驱物,在硫酸溶液中,130℃水热反应12h,生长了棒状MnO2晶体.探索了KMnO4和(NH4)2SO4的用量以及反应温度对合成棒状MnOOH晶体的影响.利用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和选区电子衍射等(SAED)等手段对产物进行了表征.结果表明,产物MnOOH为单斜结构的纯相,呈现棒状形貌,其平均直径约为72nm, 长度近9.2μm,显示单晶特性;产物MnO2为四方结构的纯相,呈现棒状形貌,其平均直径约为83nm, 长度达11μm,显示单晶特性.  相似文献   

9.
水热法合成SnO2金红相纳米柱晶体   总被引:6,自引:6,他引:0  
本文采用水热法,以SnCl4·5H2O为前驱物,NaOH为矿化剂,在180℃,填充度为68;,通过加入不同量的NaOH,调节溶液pH值分别为2、4、11,合成了三种具有不同形态的金红相SnO2纳米晶体.其中在较高浓度的酸或强碱环境下合成了具有清晰结构,长100nm、直径10nm的SnO2纳米柱体.  相似文献   

10.
采用不同方法制备的培养料,进行了Bi12SiO20(BSO)晶体的水热生长实验.其中以高纯三氧化二铋,二氧化硅为原料,使用铂坩埚烧制成的玻璃体为培养料,5 mol/L的NaOH溶液作为矿化剂溶液,黄金衬管作为反应场所,采用二次水热生长的方法,获得尺寸为10×10×6 mm3的无色BSO晶体.晶体的显露面主要为(001)和(110).讨论了不同方法制备的培养料对晶体呈色的影响,并测量了晶体的截至边.  相似文献   

11.
以氢氧化钠为沉淀剂,采用水热方法制备了Gd2O3∶Dy3+纳米棒.通过红外光谱、扫描电镜及X射线衍射对前驱体及目标产物的物相结构、微观形貌进行了分析表征,通过荧光分光光度计测试了所得Gd2O3∶Dy3+的发光性能.结果表明:水热前驱体为六方相氢氧化钆(镝),经900℃焙烧得立方相的Gd2O3∶Dy3+.所得G d2O3∶Dy3为直径约100 nm,长度约500 nm~1μm的纳米棒.其激发光谱由一系列激发峰组成,峰值分别位于239 nm、279 nm、314 nm、353 nm,最强峰位于279 nm处;发射光谱主要由两部分组成,分别为460 ~500 nm的蓝光和560~590nm的黄绿光发射峰(带),均属于Dy3+的特征发射,且后者的强度远高于前者,因此,在紫外光激发下呈黄光发射.  相似文献   

12.
水热法合成氧化锌晶体   总被引:15,自引:8,他引:7  
本文采用水热法,通过改变矿化剂浓度,合成了具有不同晶体形态的氧化锌晶体.在430℃,填充度为35;,矿化剂浓度为1M KOH时,只合成了氧化锌微晶.氧化锌晶体的长度为几百纳米到几微米,晶体形状为六棱锥体.当矿化剂为3M KOH或2M KOH、1M KBr时,合成了高质量的氧化锌晶体.反应 24h后,合成的最大晶体长度(c轴方向)超过1mm,晶体呈单锥六棱柱体,显露柱面m{1010}、锥面p{1011}、负极面o面{0001}.另外还生成多种不同形态的微晶体,最小几微米,中等的几十微米,为六棱锥体,显露锥面p{1011}、负极面o面{0001},没有显露柱面.  相似文献   

13.
以硝酸铝和无水乙醇为原料,采用喷雾燃烧法制备α-Al2O3微粉,研究了乙醇用量、α-Al2O3晶种、ZnF2、热处理温度等对合成α-Al2O3微粉的影响,采用XRD、SEM分析了微粉的结构与形貌.结果表明,增加乙醇的用量、引入α-Al2O3晶种都有利于α-Al2O3相的生成.  相似文献   

14.
磁性Fe3O4六方片状晶体和单晶纳米棒的水热合成   总被引:1,自引:1,他引:0  
本文分别以FeSO4·7H2O、(NH4)2Fe(SO4)2·6H2O和NaOH、NH3·H2O为原料,以KClO4与KNO3为氧化剂,采用水热合成法分别合成出Fe3O4六角片状晶体和单晶纳米棒.产物分别用X射线衍射仪(XRD)谱图、透射电子显微镜(TEM)、选区电子衍射(SAED)谱图以及磁滞回线图谱加以表征.结果表明,反应物原料及氧化剂的选择对Fe3O4单晶的制备及其形态的影响至关重要.反应温度控制在110℃,时间为14h.室温下,Fe3O4六方片状晶体和单晶纳米棒的磁化率(Ms)和矫顽力(Hc)均有所区别.  相似文献   

15.
实验首先以γ-AlOOH粉体为原料,KCl-Na2SO4复合盐为熔剂,采用助熔剂法合成了α-Al2O3片晶,通过对合成片晶成型烧成,制备具有片状晶体支撑的氧化铝多孔陶瓷材料.并对α-Al2O3片晶形成过程,多孔陶瓷显气孔率、抗折强度、微观结构以及孔径分布进行了研究.研究结果表明,在KCl与Na2SO4复合盐存在情况下,可在900℃条件下合成分散性好,颗粒大小均匀的六方形α-Al2O3片晶,片晶的直径大约在10μm,厚度为0.3~0.5 μm.合成的α-Al2O3片晶具有非常好的烧结活性,在无添加烧结助剂的情况下,1600℃保温2h得到了显气孔率为41.74;,抗折强度为115.34MPa,孔径分布范围窄的氧化铝多孔陶瓷.窄的孔径分布以及优异的机械性能使其成为一种很有前途的膜支撑体和精确过滤材料.  相似文献   

16.
高温相偏硼酸钡α-BaB2O4晶体的结晶习性   总被引:1,自引:1,他引:0       下载免费PDF全文
采用Cz法生长了高温相偏硼酸钡α-BaB2O4晶体,尺寸为φ50mm×40mm,晶体无色透明,在He-Ne激光照射下无散射颗粒,无生长条纹.在生长过程中,α-BaB2O4晶体存在强烈的晶面显露特性,主要与晶体所属点群R-3c有密切关系,本文采用周期键链PBC理论分析了α-BaB2O4晶体的结晶习性.在实验上根据晶面夹角的关系,结合X射线劳埃衍射照相的方法标定了晶体的显露面指数,两者很好地吻合.α-BaB2O4晶体主要存在了3组显露面即三方锥面S{1-102}、六方柱面P{11-20}和菱面体T{21-34},且显露顺序为S>P>T,三方锥面S与六方柱面P的晶棱方向为[-1101],三方锥面S与菱面体T面的晶棱方向为[-4223],在晶体放肩部位处有对称分布的6条晶棱,分别对应于两组晶向[10k1i],[11k2i],i=1,2,3在一般情况下,k1i≠12i.  相似文献   

17.
以Al2(SO4)3·18H2O为原料,采用熔融盐法制备片状α-Al2O3粉体,详细研究了纳米α-Al2O3晶种与片状α-Al2O3晶种对片状α-Al2O3粉体粒径大小的影响.研究表明,随着纳米α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径明显减小;随着片状α-Al2O3晶种含量的增加,片状α-Al2O3粉体平均粒径会增大,但粒径增大的幅度会逐步降低.对片状α-Al2O3粉体粒径大小进行了数值模拟,模拟结果表明,片状α-Al2O3粉体的最终平均粒径大小与片状α-Al2O3晶种粒径成正比,与片状α-Al2O3晶种含量的三次方根成反比关系;通过改变片状α-Al2O3晶种的粒径大小与含量,能够很好地实现片状α-Al2O3粉体粒径大小的控制.  相似文献   

18.
姜敏 《人工晶体学报》2006,35(2):319-321
本文以对氨基苯甲酸和联苯胺为配体,通过水热合成制备Co(II)的配合物,得到Co(II)(C7H7O2N)2(C12H12N2)2(C7H7O2N= p-aminobenzoic acid, p-abza, C12H12N2= Benzidine)深蓝色微晶颗粒.通过元素分析、IR等方法对配合物进行了表征,并通过TG分析对该配合物的热稳定性及热分解机理做了初步探讨.  相似文献   

19.
水热法合成硼酸钙的场发射扫描电镜分析   总被引:1,自引:0,他引:1  
以工业硼酸、硼砂和氧化钙为原料,通过改变反应温度和原料配比,用水热法合成了系列硼钙化合物.根据化学分析和XRD分析数据确定了各种合成产物的化学组成、物相名称,用场发射扫描电镜(FE-SEM)对六种硼酸钙的显微形貌、颗粒大小进行了表征,发现它们的显微形貌、颗粒大小有很大的不同.CaO·3B2O3·5H2O呈条板状,厚度在100~300 nm之间;2CaO·5B2O3·5H2O呈大纳米薄片,厚度在50~100 am的居多;2CaO·3B2O3·H2O则是纳米细线,直径在100 nm左右;4CaO·5B2O3·7H2O呈小纳米薄片状,厚度在100 nm左右;2CaO·B2O3·H2O呈球粒状,大小在500 am~1μm;CaO·B2O3呈粗针状,粗、细端直径在150~300 nm之间.  相似文献   

20.
以NH4Al(SO4)2与NH4HCO3为原料,采用共沉淀法制备出前驱物碳酸铝铵(AACH),并煅烧得到超细α-Al2O3粉末. 研究了pH值、滴加速度及醇水混合溶剂等因素对反应产物的影响,并对前驱物AACH的高温相变过程和α-Al2O3籽晶对θ-Al2O3→α-Al2O3相变的影响进行了分析.利用XRD、TEM和BET等对粉体的性能进行表征.结果表明:在醇水混合溶剂中控制反应体系的pH值为9~10,将硫酸铝铵溶液以<18 mL/min的速度滴入碳酸氢铵溶液,可合成颗粒细小、粒度分布均匀且分散性优异的AACH前驱物.不含籽晶的AACH煅烧时α相完全转化温度为1150 ℃,获得α-Al2O3粒径约为100 nm,而α-Al2O3籽晶的加入可将完全转变温度降至1050 ℃,获得的α-Al2O3粒径约为70 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号