首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
冬枣品质受其品种和生长环境等因素的影响,引起采后化转红指数不同,导致果实的颜色差异较大,从而影响其可溶性固形物(SSC)检测模型的分析精度。采用可见-近红外(Vis-NIR)光谱结合Norris-Williams平滑(NWS)、连续小波导数(CWD)、多元散射校正(MSC)、标准正态变量变换(SNV)和NWS-MSC五种光谱预处理方法构建不同颜色(红绿相间MJ,绿色GJ和红色RJ)冬枣SSC的偏最小二乘(PLS)定量分析模型,分别采用MJ,GJ,RJ,MJ-GJ和MJ-GJ-RJ五个样品集合建立冬枣SSC的定量分析模型,并采用由MJ-GJ-RJ三种颜色冬枣样品组成的测试集进行模型的评价;以不同建模样品集(校正集)的校正相关系数(Rc)和交互验证均方根误差(RMSECV)作为构建最优模型的评价指标;测试集的预测相关系数(Rp)和预测均方根误差(RMSEP)用于模型预测精度的评价。研究结果表明:分别采用MJ,GJ和RJ的独立样品集进行建模时,模型仅对具有相同颜色的冬枣样品的SSC实现了较好的预测;分别在MJ样品中加入GJ和GJ-RJ样品进行MJ-GJ和MJ-GJ-RJ两个混合样品集的定量模型的构建时,MJ-GJ模型对MJ和GJ样品的SSC具有较好的预测效果,其RMSECV,Rc,RMSEP,Rp分别为1.108,0.698,0.980,0.724和1.108,0.698,0.983,0.822,而对RJ样品的预测误差较大,模型的RMSECV,Rc,RMSEP,Rp为1.108,0.698,1.928,0.597;而MJ-GJ-RJ模型对三种颜色的冬枣SSC均有较好的预测结果:MJ-GJ-RJ模型对MJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.077,0.668;对GJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,0.881,0.861;对RJ样品的SSC模型的RMSECV,Rc,RMSEP,Rp为1.158,0.796,1.140,0.841;采用蒙特卡罗无信息变量消除(MCUVE)方法进一步对MJ-GJ-RJ样品集光谱的特征变量进行优选后,模型的RcRp分别由原来的0.796和0.864提高到0.884和0.922,模型的RMSECV和RMSEP分别由1.158和0.946减小到0.886和0.721,模型具有较好的分析精度。采用可见-近红外光谱对不同颜色冬枣的SSC进行分析时,当建模集样品与测试集样品颜色属性相似或选择性质相似的建模变量进行模型构建时,模型具有更好的通用性。  相似文献   

2.
可溶性蛋白和谷胱甘肽(GSH)是羊肉重要的生理生化指标,是衡量机体抗氧化能力大小的重要因素,传统检测方法程序复杂,检测费时。为此应用可见-近红外(400~1 000 nm)高光谱成像技术实现可羊肉可溶性蛋白和还原性谷胱甘肽(GSH)含量无损、快速检测。首先,对采集的180个羊肉样本的原始光谱信息采用4种方法进行预处理,再运用竞争自适应加权算法(CARS)、区间变量迭代空间收缩算法-迭代和保留信息变量法(iVISSA-IRIV)进行特征波段的提取。同时使用灰度共生矩阵法(GLCM)提取贡献率最高的主成分图像的纹理信息。最后将优选出的预处理方法和特征波长信息作为光谱信息和光谱-纹理融合信息分别结合多元线性回归(MLR)、最小二乘支持向量机(LS-SVM)模型建立羊肉可溶性蛋白和谷胱甘肽含量的预测模型。结果显示未经预处理的原始光谱建立的羊肉可溶性蛋白含量PLSR模型效果最佳,其RcRp分别为0.875 7和0.854 7;采用SNV法预处理后光谱建立的羊肉GSH含量PLSR模型效果最佳,其RcRp分别为0.804 8和0.826 5。利用iVISSA-IRIV共筛选出31个特征波长,建立的羊肉可溶性蛋白LS-SVM模型的RcRp最优,分别为0.914 6和0.881 8;同时利用iVISSA-IRIV筛选出29个特征波长,建立的羊肉GSH-MLR模型的RcRp最优,分别为0.844 6和0.870 5。最终经光谱特征信息和图谱信息融合模型对比发现,建立iVISSA-IRIV-LS-SVM模型对羊肉可溶性蛋白预测效果最佳,其RcRp分别为0.914 6和0.881 8;利用SNV-iVISSA-IRIV法提取的光谱特征信息与纹理信息融合建立的MLR模型为预测羊肉GSH含量的最优模型,其RcRp分别为0.849 5和0.890 4。利用最优iVISSA-IRIV-LS-SVM和iVISSA-IRIV-MLR模型和成像处理方法,结合伪色彩图像直观的表示羊肉样本的可溶性蛋白和GSH含量的空间分布情况。研究结果表明利用高光谱图像的光谱和纹理信息能够用来预测羊肉可溶性蛋白和GSH含量。  相似文献   

3.
为了找到一种能够对牛乳中的两种主要过敏原(αs1和κ-酪蛋白)含量快速检测的方法,以河南、湖北、宁夏和内蒙古四省区的211份中国荷斯坦牛牛乳样本为研究对象,建立了基于傅里叶变换中红外光谱技术的牛乳中αs1和κ-酪蛋白含量的无损快速检测模型。首先对牛乳的原始光谱进行预分析,发现水对牛乳的光谱吸收具有很强的干扰,对水的两个主要吸收区域1 597~1 712和3 024~3 680 cm-1进行分析,发现水的吸收区域1 597~1 712 cm-1和蛋白的部分吸收区域1 558~1 705 cm-1(酰胺Ⅰ)基本重合,通过对比去除1 597~1 712 cm-1前后的效果,最终选择925.92~3 005.382 cm-1的光谱区域作为敏感波段用于后续分析。选取的全光谱经手动降维,利用MCCV剔除异常样本,分别采用标准正态变量变换(SNV)、多元散射校正(MSC)等8种预处理算法和竞争性自适应重加权算法(CARS)、无信息变量消除法(UVE)等3种特征选择算法联合建立支持向量机回归模型(SVR)。经检验,对于αs1-酪蛋白,一阶导数和CARS算法结合建立的SVR模型效果最优,训练集相关系数Rc和测试集相关系数Rp分别为0.882 7和0.899 8,训练集均方根误差RMSEC和测试集均方根误差RMSEP分别为1.136 3和1.372 6;对于κ-酪蛋白,一阶差分和UVE算法结合建立的SVR模型效果最优,训练集相关系数Rc和测试集相关系数Rp分别为0.880 8和0.890 3,训练集均方根误差RMSEC和测试集均方根误差RMSEP分别为0.534 5和0.535 4。研究结果表明,基于傅里叶变换中红外光谱技术建立的SVR模型可以对牛乳中的过敏原αs1和κ-酪蛋白含量进行无损检测,预测效果良好,此研究弥补了国内利用光谱技术对牛乳中的酪蛋白进行无损快速检测的空白。  相似文献   

4.
采用颜色、剪切力和K值评价冰鲜与冻融三文鱼的品质,利用高光谱成像技术结合化学计量学方法对三个品质指标进行预测,并讨论了不同波长选择算法所建模型的预测效果。准备不同冻融次数三文鱼样本,进行高光谱数据采集和品质指标真实值的测定。采用六种预处理方法减少光谱数据中暗电流以及噪声的干扰,采用竞争性自适应重加权算法(CARS)、区间变量迭代空间收缩法(iVISSA), iVISSA-CARS筛选出与待测指标相关的变量,通过比较三种波长选择算法筛选的特征变量所建偏最小二乘(PLS)模型的预测结果,优选出三个品质指标最佳的变量选择方法。结果表明1st Der-CARS-PLS模型对颜色中的a*预测效果最好,筛选出的51个变量建立模型的RcRp分别为0.931 6和0.929 7,RMSECV和RMSEP分别为0.716和0.735;2nd Der-CARS-PLS模型对剪切力的预测效果最好,筛选出的61个特征变量建立模型的RcRp分别为0.892 1和0.887 3,RMSECV和RMSEP分别为0.67 N和0.80 N;模型N-CARS-PLS取得了K值最好的预测效果,筛选出的51个特征变量所建模型的Rc,Rp,RMSECV和RMSEP分别为0.951 4, 0.950 0, 1.33, 1.53。说明CARS变量筛选方法能够有效提取与特征指标相关的变量,提高模型的预测性能。除此之外,特征变量筛选联合算法iVISSA-CARS-PLS对三个指标的预测也取得了较好的结果,对三个指标测试集的Rp分别为CARS-PLS预测模型的97.48%,97.02%,98.98%,而所用变量数仅为CARS-PLS的60.78%,62.29%,60.78%,说明变量筛选组合算法极大的减少了建立模型所用的数据量。三个指标的CARS-PLS以及iVISSA-CARS-PLS模型取得的预测效果均高于iVISSA-PLS,说明对于三文鱼三个品质指标的预测,CARS波长点筛选策略优于iVISSA波段选择策略。将优选出来的PLS模型分别用于构建三个品质指标的可视化分布图,清楚的展示了不同冻融次数三个品质指标的大小以及空间分布。因此,高光谱成像技术结合化学计量学方法可以较好的表征三文鱼的品质指标,为三文鱼多品质指标的同时快速检测提供了部分理论参考。  相似文献   

5.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标。传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义。基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一算法提取特征光谱变量,而这些算法单独使用易导致预测结果的稳定性不足。对此,开展了基于高光谱成像技术的猕猴桃糖度的无损检测方法研究。以四川省雅安市“红阳”猕猴桃为研究对象,依次对猕猴桃样本编号并采集其在400~1 000 nm波长范围内的高光谱图像,计算感兴趣区域的平均光谱作为样本的有效光谱信息;分别采用多元散射校正(MSC)、标准正态变量变换(SNV)、直接正交信号校正(DOSC)等3种光谱数据预处理方法分析对预测模型精度的影响,对比结果显示DOSC的预处理效果最好;对预处理后的光谱分别采用一次降维(CARS,SPA,IRIV)、一次组合降维(CARS+SPA,CARS+IRIV)算法和二次组合降维算法((CARS+SPA)-SPA,(CARS+IRIV)-SPA))等7种算法提取特征光谱变量,并分别构建了预测猕猴桃糖度的3种模型,即支持向量回归机(SVR)、最小二乘支持向量机(LSSVM)和极限学习机(ELM)模型;最后对比了基于不同特征提取方法的3种模型的预测精度。研究结果表明:ELM模型具有最好的预测性能,而SVR模型的预测性能最差;(CARS+IRIV)-SPA所选特征光谱变量输入LSSVM、ELM模型,其获得的预测结果均优于其他算法所选特征光谱变量输入对应模型所得的预测结果,证明了(CARS+IRIV)-SPA算法在提高猕猴桃糖度含量检测精度方面的有效性。对比不同方法的预测结果可知,(CARS+IRIV)-SPA-ELM对猕猴桃糖度的预测性能最优,其相关系数Rc=0.945 1,Rp=0.839 0,均方根误差RMSEC=0.450 3,RMSEP=0.598 3,预测相对分析误差RPD=2.535 1,该方法为猕猴桃糖度的检测无损化、精准化、智能化发展提供了可靠的理论依据和技术支撑。  相似文献   

6.
采用近红外(NIR)漫反射光谱法对新疆特色梨果库尔勒香梨的五种不同果(包括青头、粗皮、脱萼、宿萼、突顶果)的硬度进行测定。由于近红外光谱数据量大且原始光谱噪声明显、测定水果时散射严重等导致光谱建模时关键波长变量提取困难。以新疆库尔勒香梨为研究对象,为了有效地消除固体表面散射以及光程变化对NIR漫反射光谱的影响,首先采用标准正态变量变换(SNV)和多元散射校正(MSC)对库尔勒香梨的原始光谱进行预处理。为寻找适合近红外光谱检测库尔勒香梨硬度的最佳特征波长筛选方法,进行香梨近红外光谱的特征波长变量选择方法的比较与研究。研究比较了两种特征波长筛选方法对库尔勒香梨硬度偏最小二乘法(PLS)建模精度的影响。同时使用反向偏最小二乘(BiPLS)和遗传算法结合反向偏最小二乘(BiPLS-GA)在全光谱范围内筛选香梨硬度的特征波长变量,将校正均方根误差(RESMC)、预测均方根误差(RESMP)以及决定系数(R2)作为模型的评价标准,并最终确定最优波段选择方法及最佳预测模型。基于选择的特征波长变量建立的PLS模型(BiPLS-GA)与全光谱变量建立的PLS模型进行比较发现BiPLS-GA模型仅仅使用原始变量中6.6%的信息就获得了比全变量PLS模型更好的库尔勒香梨硬度的预测结果,其中R2,RMSEC和RMSEP分别为0.91,1.03和1.01。进一步与基于反向偏最小二乘算法(BiPLS)获得的特征变量建立的PLS模型比较发现,BiPLS-GA不仅可以去除原始光谱数据中的无信息变量,同时也能够对共线性的变量进行压缩去除,使得建模变量从301个减少到20个。极大地简化模型的同时有效地提高了模型的预测精准度和稳定性。因此该方法能够有效地用于近红外光谱数据变量的选择。证明了近红外光谱分析技术结合BiPLS-GA模型能够高效地选择出建模变量,去除与库尔勒香梨硬度无关的近红外光谱信息,显著地提高库尔勒香梨硬度定量模型的预测精度。这不仅为新疆地区特色梨果库尔勒香梨的快速、精确、无损优选分级提供一定的技术支持,同时也为基于近红外光谱分析技术预测水果内部品质的研究提供了参考。  相似文献   

7.
应用激光诱导击穿光谱(LIBS)技术研究了快速检测咖啡豆中咖啡因含量的可行性。将咖啡豆磨粉压成片状作为采集LIBS光谱数据的样本,应用原子吸收分光光度计测量每个样本中咖啡因的含量。应用基线校正,小波变换和归一化等数据预处理方法;针对基于全部变量的偏最小二乘(PLS)模型会出现过拟合,分别应用回归系数和主成分分析(PCA)选择特征变量,并建立了基于特征变量的PLS和BP神经网络模型。结果表明:基于回归系数所选特征变量的PLS模型中,建模集相关系数Rc=0.96,预测集Rp=0.91;基于PCA提取特征变量的PLS模型中,Rc=0.94,Rp=0.90;基于PCA所选特征变量的BP神经网络模型中,Rc=0.96,Rp=0.96。两种方法所提取特征变量均对应C,H,O,N,Na,Mn,Mg,Ca和Fe,且基于上述两种方法所选特征变量的PLS模型均对预测集样本有较好的预测结果,说明上述元素与咖啡因含量存在联系,应用回归系数和PCA选择的特征变量是有效的,但是咖啡豆内C,H,O,N,Na,Mn,Mg,Ca,Fe与咖啡因含量的确切关系需要进一步研究。基于PCA所选特征变量的BP神经网络模型有更优的预测结果,说明所选特征变量适用于不同的建模方法。研究表明LIBS技术结合化学计量学方法可以实现咖啡豆中咖啡因含量的快速检测。  相似文献   

8.
为提高生鲜羊肉储存期内(4,8和20 ℃环境)挥发性盐基氮(TVB-N)的近红外光谱(NIR)检测的稳定性和准确性,选取特征光谱和预测模型是关键步骤。以121个羊肉样品为实验对象,采集生鲜羊肉680~2 600 nm波段的近红外光谱。以多元散射校正(MSC)、标准正态变换(SNV)等散射校正方法,Savitzky-Golay卷积平滑(SGS)、移动平均平滑(MAS)等平滑处理方法,以及归一化(Normalization)、中心化(Centering)、标准化(Autoscaling)等尺度缩放方法分别预处理光谱数据后建立偏最小二乘法(PLS)预测模型。比较发现SGS处理的光谱建模效果最好。利用蒙特卡洛采样(MCS)法及马氏距离法(MD)消除了羊肉光谱的5个异常数据。运用光谱-理化值共生距离(SPXY)算法划分总样本的75%(87个)为校正集样本,剩余29个为验证集样本,利用竞争性自适应重加权法(CARS)、无信息变量消除法(UVE)、改进的无信息变量消除法(IUVE)和连续投影算法(SPA)提取特征光谱得到的波长个数分别为14,713,144和15。将全光谱和4种方法提取的特征波长作为输入变量建立预测模型,CARS提取的波长所建立模型的性能优于UVE、IUVE和SPA提取的波长所建立模型的性能,表明CARS方法可以有效简化输入变量并提高预测模型的性能。改进后得到的IUVE法相比于UVE法,筛选出的波长数更少且模型性能有所提升。以提取的特征波长建立PLS,支持向量机(SVM)和最小二乘支持向量机(LS-SVM)预测模型,SVM模型得到最优的校正集预测结果,其中CARS-SVM预测模型的校正决定系数(R2C)和校正均方根误差(RMSEC)分别为0.939 1和1.426 7,最优的验证集预测效果为LS-SVM预测模型得到,其中IUVE-LS-SVM预测模型的验证决定系数(R2V)和验证均方根误差(RMSEV)分别为0.856 8和1.886 2。基于近红外特征光谱建立简化、优化的生鲜羊肉储存期TVB-N预测模型,为实现快速无损检测生鲜羊肉中的TVB-N浓度提供技术支持。  相似文献   

9.
土壤水分对近红外光谱表现出强烈的吸收和对土壤有机质含量的预测造成干扰。研究选择41个样本作为校正集和9个样本作为预测集,所有样本做不同含水率(5%,10%,15%和17%)的处理。采用S/B和DS算法分别对预测结果和全光谱进行校正,消除土壤水分的影响。结果得出预测结果偏差减小和模型预测性能得到改善,Rp高于0.89和RMSEP低于0.885%。研究表明S/B和DS算法能有效消除土壤水分的影响和提高土壤有机质预测的准确性。  相似文献   

10.
注射用益气复脉(冻干)是由红参、麦冬、五味子3种药材制成的新型冻干粉针制剂。红参提取物总皂苷是注射用益气复脉(冻干)生产过程的重要质控指标,传统分析方法分析结果具有滞后性,无法快速反馈生产过程质量信息。近红外光谱(NIR)作为一种快速无损的过程监控工具已经广泛应用于中药质量控制领域。中药成分复杂且近红外光谱吸收强度弱、谱区重叠严重,如何从干扰严重的复杂光谱中提取有效信息是提高测量准确度的关键。模型集群分析(MPA)通过随机采样,最大限度地提取了样本信息,打破了传统一次性建模思路,为变量筛选方法提供了新的思想。采集了55批红参提取物近红外光谱数据,运用多元散射校正(MSC)进行光谱数据预处理,并将MPA衍生的随机蛙跳法(RF)、竞争自适应重加权(CARS)、变量组合集群分析法(VCPA)、VCPA联合迭代保留信息变量(IRIV)方法与OPUS软件自带的变量筛选方法分别用于总皂苷含量偏最小二乘(PLS)定量分析模型的建立中。结果表明,OPUS软件、CARS-PLS与RF-PLS所建模型校正集相关系数(Rc)仅为0.601 3,0.565 3与0.644 0,拟合效果不理想。VCPA-PLS法所建模型的Rc为0.951 2,是几种变量筛选方法中最高的,但是其预测性能不佳,模型稳健性不理想。VCPA-IRIV-PLS模型具有最好的预测效果,Rc为0.928,RSEP%为7.99%。  相似文献   

11.
高光谱成像的褐土土壤速效钾含量预测   总被引:2,自引:0,他引:2  
精细农业变量施肥取决于对农田的土壤养分分布的了解,快速获取土壤信息是实施精细农业的基础。速效钾是土壤肥力的重要参数,是植物生长发育所必需的营养元素。对土壤速效钾含量进行测量,是了解土壤肥力的重要途径,是实现精细农业的必要条件。以山西典型褐土土壤为研究对象,采集农田耕层褐土土壤样品共169份,样品经风干处理,手动捏碎较大的土粒并去除杂质后,未经研磨过筛处理而直接用于土壤近红外高光谱的测量。根据实验室速效钾含量测定结果,将所有土壤样品分为两类:其中速效钾含量低于100 mg·kg-1的样品共144个,随机选取108个作为低含量建模集(Lc),剩余36个作为低含量验证集(Lp);速效钾含量高于100 mg·kg-1的样品共25个,随机选取19个作为高含量建模集(Hc),剩余6个作为高含量验证集(Hp)。其中LcHc统称为所有含量建模集(Tc),Lp和Hp统称为所有含量验证集(Tp)。获取所有土壤样本950~1 650 nm范围内的近红外高光谱图像。分别采用平均光谱曲线(R)、平均光谱曲线的一阶导数(FD)、平均光谱曲线与一阶导数共同建模(R&FD)、平均光谱曲线与一阶导数的乘积(R*FD)、平均光谱曲线与一阶导数的商(R/FD)等五种光谱数据预处理方法,结合偏最小二乘法(PLS),分别对建模集Tc,LcHc建模,然后分别对验证集Tp,LpHp进行验证。结果表明:土壤的平均光谱反射率随速效钾含量的增大呈现先增加后减小的趋势。当速效钾含量低于100 mg·kg-1时,所有波段的光谱反射率随速效钾含量的增加而增加;当速效钾含量在100~200 mg·kg-1之间时,所有波段的光谱反射率均达到最大值。当速效钾含量超过200 mg·kg-1时,950~1 400 nm的光谱反射率急剧减小,但曲线的整体斜率显著增加;且速效钾含量越高,曲线整体斜率越大。当速效钾含量高于100 mg·kg-1时,平均光谱曲线的一阶导数显著增大,且随速效钾含量的增加而增加。该研究建立的PLS模型,可以对整体(所有速效钾含量)和高含量(≥100 mg·kg-1)速效钾进行有效预测,但无法对低含量(≤100 mg·kg-1)速效钾进行预测。建模效果最好的光谱预处理方法为R*FD,其次为FD,R,而R&FD,R/FD预测效果相对较差。最优建模方式为:R*FD结合Tc建模,其PLS主因子个数为2个,RMSEc=29.293,RPDc=4.669,R2c=0.956;对Tp的验证效果为RMSEp=29.438,RPDp=4.740,R2p=0.958;对Hp的验证效果为RMSEp=23.033,RPDp=3.199,R2p=0.915。该模型能够根据土壤速效钾的含量对土壤进行分类:当预测值小于100 mg·kg-1时,表明土壤速效钾含量低于100 mg·kg-1,具体含量不确定;当预测值大于100 mg·kg-1时,预测值则能够很好反映土壤速效钾的真实含量。由于选用的土壤样本未经研磨和过筛处理,因而能够大大缩短样本制备时间,提高预测效率。该研究结果可为近红外高光谱成像应用于褐土土壤除速效钾含量以外其他营养成份的快速预测提供参考。  相似文献   

12.
高光谱成像可将图像和光谱相结合,同时获得目标对象的图像和光谱信息,已在农产品定性和定量分析检测方面得到广泛利用。利用可见-近红外高光谱成像结合化学计量学方法对贮藏期内灵武长枣果糖含量进行无损检测。采用高效液相色谱测量长枣果糖含量的化学值,可见-近红外高光谱系统采集长枣的高光谱图像,提取每个样本感兴趣区域的平均光谱;建立长枣贮藏期的径向基核函数支持向量机(radial basis kernel function support vector machine,RBF-SVM)模型;分别选用正交信号校正法(orthogonal signal correction,OSC)、多元散射校正(multiplicative scatter correction,MSC)、中值滤波(median-filter,MF)、卷积平滑(savitzky-golay,SG)、归一化(normalization,Nor)、高斯滤波(gaussian-filter,GF)和标准正态变换(standard normalized variate,SNV)等方法对原始光谱进行预处理;为减少数据量,降低维度,提高运算速度,采用反向区间偏最小二乘法(backward interval partial least squares,BiPLS)、间隔随机蛙跳算法(interval random frog,IRF)和竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对光谱数据提取特征变量;建立全波段和特征波段的偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principle component regression,PCR)长枣果糖含量预测模型。结果表明:RBF-SVM判别模型校正集准确率为98.04%,预测集准确率为97.14%,能很好地预测长枣的贮藏期;利用BiPLS, IRF及CARS进行降维处理,提取特征波长个数为100, 63和23,占原光谱数据的80%,50.4%和18.4%;为简化模型运算过程并提高模型精度,采用CARS算法对BiPLS及IRF算法所选取的特征波长进行二次筛选,分别优选出18和15个特征波长,占原光谱数据的14.4%和12%,显著减少特征波长数;将全波段光谱与提取出的特征波长分别建立长枣果糖含量的PLSR及PCR预测模型,优选出CARS提取特征波长建立的PLSR模型效果最优,其中校正集的相关系数Rc=0.854 4,均方根误差RMSEC=0.005 3,预测集的相关系数Rp=0.830 3,均方根误差RMSEP=0.005 7,说明CARS有效地对光谱进行降维,简化了数据处理过程。研究表明,利用可见-近红外高光谱成像结合化学计量学方法及计算机编程,可以有效的实现灵武长枣果糖含量的快速无损分析,为灵武长枣内部品质的检测提供理论依据。  相似文献   

13.
硫代巴比妥酸反应物(TBARS)是表征肉品脂肪氧化程度的主要化学信息.为探究二维相关光谱技术(2DCOS)筛选羊肉中TBARS含量的特征变量的可行性,利用高光谱成像技术结合2DCOS分析建立TBARS含量的快速无损检测方法.采集样本在400~1000 nm的光谱反射图像,通过ENVI 4.8软件在光谱图像上手动设置感兴...  相似文献   

14.
利用多模式可调节的光学机构采集了苹果漫透射、全透射和漫反射三种检测方式的光谱,研究在不同的检测方式下苹果的光谱特征并采用PLS建立苹果可溶性固形物含量SSC预测的模型.首先分别采集每个样品赤道上四点的漫透射、全透射和漫反射光谱,然后分别使用多元散射校正M SC、基线偏移校正BOC、归一化Normalize和高斯滤波平滑...  相似文献   

15.
小米米粉的主要成分是淀粉,其食味品质决定小米米粉的市场价值。糊化特性是小米米粉的重要物理特性,而碱消值是能够直接反应其糊化特性的主要特征指标。通过小米米粉碱消值的差异,可以间接反映直链淀粉含量,当碱消值降低时,相反,糊化温度和直链淀粉含量却很高,而小米米粉口感粘糯性越差。采用高光谱技术结合化学计量学方法,建立快速检测小米米粉碱消值预测模型,旨在探索一种快速、无损、低成本预测小米米粉碱消值的方法。实验采集小米米粉高光谱数据,在被测样品感兴趣区域(ROI)按像素点逐一选择,提取高光谱数据矩阵,并进行均值运算,得到每个样品在各个光谱波段的平均光谱值。利用粘度测定仪(RVA)测定小米米粉碱消值指标。光谱数据采用全波段、竞争性自适应重加权采样法(CARS)及随机蛙跳(RF)法选择特征波段处理,建立偏最小二乘回归(PLSR)模型;全波段建立预测模型Rp值最高为0.77,说明能够利用小米米粉高光谱反射率反演小米米粉的碱消值,而采用其他两种计算方法所得Rp值分别为0.72和0.7,与前者较为接近,也反映了采用CARS和RF建立的回归模型具有可行性。为提高预测精度,采用Savitzky-Golay(S-G)法、多元散射校正(MSC)和S-G+MSC对数据预处理。可以看出采用MSC预处理光谱数据建立PLSR模型性能较好(Rp=0.83)。对MSC预处理后的数据再次CARS和RF法选择特征波段,建立PLSR模型,与未进行预处理的回归模型相比,Rp值变化不大,这也说明CARS和RF具有一定的稳定性,可以作为小米米粉高光谱反射率预测碱消值的参考方法。结果表明:为实现对小米米粉碱消值的快速、无损检测,通过运用高光谱技术能够利用小米米粉高光谱反射率预测碱消值,进而为小米米粉品质评级、加工及碱消值传感器的开发提供参考依据和数据支撑。  相似文献   

16.
为了研究可见-近红外(Vis-NIR)高光谱成像对滩羊肉中总酚浓度(TPC)快速检测的可行性,基于光谱信息融合图像纹理特征建立TPC含量的预测模型,实现滩羊肉中TPC含量的可视化表达。将样本集根据3∶1的比例划分成校正集和预测集,采用多元散射校正(MSC)、基线校准(Baseline)、去趋势(De-trending)、卷积平滑(S-G)、标准正态变量变换(SNV)、归一化(Normalize)等校正方法去除原始光谱中不良散射等干扰信息。通过竞争性自适应加权抽样(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩法(iVISSA)和变量组成集群分析-迭代保留信息变量(VCPA-IRIV)提取TPC浓度的代表性特征光谱。采用灰度共生矩阵(GLCM)算法依次提取肉样第1主成分图像中纹理特征。基于特征光谱及图谱融合信息建立滩羊肉中TPC含量的偏最小二乘回归(PLSR)与最小二乘支持向量机(LSSVM)预测模型并进行对比分析。结果表明,(1)利用De-trending+SNV预处理后的光谱数据建立的PLSR预测模型性能较好,其R2C=0.874 9,R2P=0.793 2;(2)采用CARS,BOSS,iVISSA和VCPA-IRIV分别提取出了23,35,57和43个特征波长,占全光谱的18.4%,28%,45.6%和16.8%;(3)采用BOSS法提取的关键性波长建立的LSSVM模型性能较好,其R2C=0.851 3,R2P=0.745 9,RMSEC=0.116 8和RMSEP=0.155 0;(4)与基于特征波长建立的预测模型相比,BOSS-ASM-ENT-CON-LSSVM模型为滩羊肉中TPC浓度的最佳图谱融合预测模型(R2C=0.850 0,R2P=0.770 9,RMSEC=0.116 0,RMSEP=0.144 7);(5)利用BOSS-PLSR简化模型将TPC浓度反演到样本的高光谱图像上,通过色彩直观化形式展现出来,实现TPC含量的可视化表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号