首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
为了实现水体表面油膜厚度的快速测量分析,以266 nm的激光作为探测系统的激发光源,基于激光诱导水拉曼散射光谱检测技术,通过获取不同种类不同厚度油膜存在下水拉曼光谱信息,建立油膜厚度反演模型。采用高斯函数拟合法校正了荧光光谱对拉曼光谱的干扰。然后根据水拉曼抑制法结合非线性最小二乘优化算法,建立油膜厚度反演模型。结果表明:对92#汽油、0#柴油、美孚机油20w-40、壳牌润滑油10w-40、采埃孚变速箱油AG6和原油油膜能探测到的油膜厚度范围为0.19~379.22 μm。采用水拉曼光谱-油膜厚度反演模型预测油膜厚度的平均相对误差在8.14%~15.81%之间。该方法能实现实验室条件下对微米级油膜的测量。  相似文献   

2.
随着海洋溢油问题的日益严重,多种遥感技术被用于海面溢油监测,其中激光诱导荧光(LIF)技术是目前被认为最有效的海面溢油探测技术之一。Hoge等基于LIF技术提出了一种利用拉曼散射光评估薄油膜厚度的积分反演算法并广泛应用于海面溢油探测,针对该算法存在误差较大的问题,提出一种融合拉曼散射光和荧光信号评估海面溢油厚度的反演算法。首先利用拉曼散射光信号反演油膜厚度,然后利用该反演结果计算获取溢油油品的荧光特征光谱,最后利用荧光信号反演油膜厚度。文中推导了利用荧光信号反演油膜厚度的算法,给出了油品荧光特征光谱的逼近算法,并给出了利用荧光信号反演油膜厚度的误差分析。通过实验对该方法进行了验证,选用原油和柴油为实验油品,以波长405 nm的激光作为激发光源,采集波长范围为420~700 nm,采集了海水的背景荧光和拉曼散射光信号、实验油品2,5,10和20 μm等不同厚度油膜的光谱信号。将采集数据分为训练集和测试集,利用训练集数据采用梯度下降法获取油品的荧光特征光谱,利用测试集数据分别采用积分拉曼法和该方法反演油膜厚度。采用积分拉曼法,原油不同厚度油膜反演结果的平均误差分别为12.6%,4.6%,4.4%和2.3%,柴油不同厚度油膜反演结果的平均误差分别为14.0%,7.0%,4.2%和3.6%;采用本文方法,原油不同厚度油膜反演结果的平均误差分别为2.5%,2.2%,1.2%和1.1%,柴油不同厚度油膜反演结果的平均误差分别为3.0%,2.4%,2.7%和1.6%。实验结果表明,2 μm油膜反演结果的误差降低最多,原油和柴油2 μm油膜的反演结果误差分别由12.6%和14.0%降低为2.5%和3.0%,其他厚度油膜反演结果的误差也有较大程度的降低,油膜厚度反演结果的误差均小于3%,采用本文算法可以有效提高油膜厚度反演结果的精度。  相似文献   

3.
油膜厚度是海面溢油污染评估分析的一个重要指标,激光诱导荧光(LIF)技术是目前最有效的海面溢油探测技术之一,基于LIF探测技术的油膜厚度反演算法当下仅有适用于薄油膜(≤10~20 μm)的评估方法,而对于较厚油膜(>20 μm)的评估目前尚无有效的反演算法。鉴于此,提出一种基于LIF技术适用于较厚油膜的反演算法,该算法采用油膜荧光信号反演油膜厚度,推导了油膜厚度反演公式,并给出了基于该反演算法的油膜厚度评估方法。首先采用最大类间方差算法(Otsu)选取合适的荧光光谱波段,然后根据选取波段内每个波长的光谱数据反演油膜厚度,最后采用反演油膜厚度的平均值作为油膜厚度评估结果。研究了该算法的适用范围,给出了该算法有效评估范围最大值与测量相对误差的关系,并结合消光系数给出了在多种测量误差条件下不同消光系数油品有效评估范围的最大值。通过实验对本文方法进行了验证,选用原油和白油的混合油(1∶50)作为实验油品,以波长为405 nm的激光作为激发光源,采集波长范围为420~750 nm,采集了海水背景荧光和拉曼散射光光谱、实验油品的荧光特征光谱和多种不同厚度的较厚油膜的荧光光谱。采用Otsu算法选取420~476 nm波段评估油膜厚度,在实验油品油膜厚度≤800 μm时,该算法对油膜厚度的评估具有较高的精度,平均误差为10.5%;在油膜厚度>800 μm时,平均误差为28.8%,评估误差较大且随油膜厚度的增加快速变大,该实验结果与利用测量相对误差和消光系数的分析结果一致。实验结果表明,该方法可以实现对海面较厚油膜厚度的有效评估,并可以根据测量相对误差和消光系数判断评估结果的有效性。  相似文献   

4.
随着我国经济的迅速发展,石油制品需求量与日俱增,伴随着工农业生产活动,大量石油制品进入土壤,造成严重的土壤石油污染。土壤中的石油污染物会对植物生长产生危害,并通过食物链威胁人类健康,因此需对土壤中的石油污染物进行现场、快速检测。激光诱导荧光技术(Laser-Induced fluorescence, LIF)具有检测速度快、灵敏度高、可现场检测等优点,但在检测土壤中有机污染物时,面临着荧光光谱重叠严重等问题。为了研究土壤中机油和柴油混合物荧光信号的重叠特性,制备了10种含有不同浓度机油、柴油混合物的土壤样品。通过搭建LIF实验系统,获取不同混合浓度的机油和柴油的荧光光谱,对油类荧光光谱进行了最大值归一化处理,建立土壤中机油、柴油混合光谱的反演关系,以最小残差平方和为指标,使用迭代逼近算法计算出土壤荧光光谱中柴油和机油样品的荧光贡献率。分别使用了全谱法和截取特征光谱两种方法计算机油和柴油的荧光贡献率。全谱法是在混合油样的全波段光谱(200~600 nm)范围进行迭代逼近,截取特征光谱方法是在截取油样光谱(330~460 nm)段进行迭代逼近。(330~460 nm)范围内包含了混合油样的所有光谱特征。用计算出的机油的荧光贡献率与机油样品浓度做线性拟合时发现,截取特征光谱法的拟合系数R为0.989,优于全谱法的0.923。分别用全谱法、截取特征光谱法计算出的荧光贡献率以及归一化机油、柴油光谱合成混合油归一化光谱,与实际归一化混合光谱比较,截取特征光谱法计算的平均相对误差为3.38%,优于全谱的8.79%,其原因是全谱法比截取特征光谱法引入了更多的噪声信号,所以在计算油类荧光贡献率时产生了较大的误差。选取机油和柴油归一化光谱上300, 350, 400, 450和500 nm等5个位置的荧光强度与归一化混合油光谱做多元线性回归拟合,计算出平均相对误差为10.31%。结果表明截取特征光谱方法优于多元线性回归方法;土壤中机油和柴油的荧光贡献率与自身的浓度之间成良好的线性关系,说明在土壤中机油和柴油混合后各自的化学性质保持稳定,在土壤中的荧光信号重叠特性是线性叠加的。这种这种方法同样可以用于其他石油类混合物的解离。通过该研究提高了LIF技术在土壤中石油烃类污染物定性与定量检测的准确性。为土壤中石油烃现场快速检测提供了方法支撑。  相似文献   

5.
针对柴油机润滑油被燃油稀释的状态监测的问题,研究了基于紫外荧光技术的柴油机润滑油被燃油稀释的检测方法,设计搭建了检测实验装置。利用峰值发射波长为365 nm的紫外LED作为发射光源,发射的紫外光通过400 nm低通滤光片过滤后进入石英比色皿中的油样,并激发油样产生荧光,产生的荧光通过400 nm高通滤光片过滤后,利用探测波长范围为400~800 nm的光电传感器采集油样的荧光信号,利用万用表读取油样的荧光强度。设计开发了信号的放大和测量系统。高、低通滤光片的组合使用,减少了紫外光源所发射的紫外光对油样的荧光强度测量的干扰。利用该实验装置,测量了润滑油中柴油含量分别为20.3 Wt.%,10.0 Wt.%,5.0 Wt.%,2.5 Wt.%,1.5 Wt.%和0.7 Wt.%以及不含柴油的空白油样的荧光强度,经拟合得到柴油含量与荧光强度的方程。最后,为了检验该方法测量润滑油中柴油含量的准确性,采用柴油含量为7.5 Wt.%油样进行验证,利用该实验装置,测量了验证油样的荧光强度,代入拟合方程,计算得到油样中的柴油含量,结果表明通过该方法测量的油样中柴油含量与油样的实际柴油含量的相对误差为0.5%,实现了实验室条件下润滑油被燃油稀释的精确测量。  相似文献   

6.
水面溢油机载航测工作需要以全面的溢油模拟目标的光谱反射率特性数据作为支撑,选择合适的工作波段,并通过获得的数据对溢油情况进行分析与判断。针对汽油、柴油、润滑油、煤油与原油五种目标样本,油膜从紫外波段到近红外波段进行了反射光谱测量,并将结果与相同实验环境下的水的反射光谱对比。实验结果表明油膜的光谱反射特性与油品类型以及油膜的厚度相关。不同种类的油膜在相同厚度的情况下,光谱反射率曲线的差异很大,而同一种类的油膜,随着油膜厚度的改变,光谱反射率曲线亦随之发生改变,因而就单一油膜而论,可以通过反射率曲线区分不同的油膜厚度。以相同的油膜厚度而论,柴油,煤油,润滑油在380 nm附近存在反射率峰值,与水的反射率差异明显,原油在大于340 nm波长的反射率远小于水,所得到的反射光谱能够在一定程度上区分不同类型油膜。实验涉及主要溢油油种,数据全面覆盖探测常用的光谱波段,定量化描述了油膜光谱反射率特性,为机载水面溢油探测工作的波段选择与水面溢油的早期发现与分析提供了全面的理论与数据支持。  相似文献   

7.
人工神经网络-荧光光谱法同时测定维生素B1,B2,B6   总被引:6,自引:0,他引:6  
应用人工神经网络原理 ,以Levenberg MarquardtBP算法对荧光光谱严重重叠的维生素B1 ,B2 ,B6三组份混合体系同时进行了含量测定。在 390~ 5 2 0nm的范围内 ,以 15个特征波长处的荧光强度值作为网络特征参数 ,并通过均匀设计安排样本 ,经网络训练和计算得出维生素B1 ,B2 ,B6 三者的平均回收率分别为 99 86 % ,99 6 0 % ,99 4 9% ,测定结果的相对标准偏差各为 1 7% ,1 6 % ,1 7%。  相似文献   

8.
石油的勘探开发遍布我国各地区,其产品的应用与工农业生产和人民日常生活密不可分。石油及石油制品在使用过程中泄漏到土壤中不断累积,会破坏生态环境。激光诱导荧光(LIF)是检测土壤中石油烃类有机污染物的重要方法。激光脉冲能量是LIF的重要实验参数,对检测灵敏度,稳定性有显著影响。为探究土壤中石油烃的激光诱导荧光信号随激发光脉冲能量变化的特性,以机油为例,在实验室制备了机油浓度为0.5%~6%的土壤样品,使用Nd∶YAG激光器作为激发光源,通过改变266 nm激光的脉冲能量,获取不同能量密度下油污土壤的荧光光谱。实验结果表明,土壤和土壤中机油的荧光光谱强度随激光脉冲能量的增加而增加,但增加到一定程度后增幅明显减小。原因是虽然激光能量密度逐渐增强荧光强度也在增强,土壤中单位面积的有机物含量有限,部分有机质已经被光解,有机物被激发的荧光趋于饱和。在适当的能量密度下,土壤中机油的荧光强度与其浓度有良好线性关系。实验发现,随着激光能量密度的减小, LIF系统测量机油的平均相对误差先减小后增大,其原因是,当激光能量密度小于一定范围时,信号的信噪比随之减小,因此测量的平均相对误差逐渐增大;当激光能量密度大于一定范围时,虽然信号的信噪比随之增大,但已经逐渐超出系统最佳的测量范围,所以测量的平均相对误差逐渐增大。当激光能量密度在2.4~4.0 mJ·cm~(-2)时,土壤中机油的荧光强度随激光脉冲能量密度线性增强,且对机油浓度的测量误差均小于2.5%,检测限在200~300 mg·kg~(-1)之间。当能量密度大于4.0mJ·cm~(-2)时,机油的荧光强度增幅显著降低,测量误差也随之增大。因此,兼顾LIF测量土壤中机油的平均相对误差和测量检测限,激光脉冲能量选择2.4~4.0 mJ·cm~(-2)较优。所述方法也可扩展其他土壤中石油烃荧光信号检测。  相似文献   

9.
为了实现水体表面油膜厚度的快速非接触检测,基于激光拉曼光谱检测技术,搭建了水体表面油膜厚度拉曼光谱检测系统。以532 nm激光作为激发光源,以常见的柴油和汽油为例研究了不同油品的拉曼光谱特性,研究结果表明,油膜拉曼光谱响应特性与油品密切相关,相同油膜厚度情况下不同油品的拉曼光谱曲线有明显的差异,97#汽油在1 651 cm-1光谱强度要高于90#汽油。随着油膜厚度的增加,柴油316和1 451 cm-1光谱强度和汽油1 651 cm-1拉曼位移光谱强度增加,油拉曼光谱信号变强;根据油水界面拉曼光谱特征,设计了油膜厚度计算因子,实验证明随着油膜厚度增加,油膜厚度计算因子rfilm呈下降趋势。可以将油膜厚度计算因子作为水体表面油膜厚度测量的一种依据。  相似文献   

10.
石油烃类污染物进入土壤后会随着时间逐步迁移到土壤深层。传统的土壤石油烃检测方法因自身的局限性,无法及时快速地检测深层土壤中的石油烃质量分数。为快速检测深层土壤中的石油烃类污染物,提出了一种基于紫外诱导荧光的石油烃原位检测技术,利用280 nm的深紫外发光二极管(LED)作为激发光源、光电倍增管(PMT)作为信号检测器完成对土壤中石油烃质量分数的探测。实验结果表明,该检测技术能够实现对不同土壤类型(红壤、黄壤、黑土和湖底淤泥土)中各类机油(汽油机油、柴油机油和空压机油)的定量检测,检测结果的平均相对误差(RE)小于10.00%,平均相对标准偏差(RSD)小于4.00%,土壤中各类石油烃的检出限均小于136 mg/kg,完成单个样本测量仅需2.0 s。  相似文献   

11.
水上溢油光谱作为高光谱遥感目标识别与分类的参考依据,在溢油识别与厚度区分等方面具有重要的研究意义。通过测量厚度范围为1.0~127 μm间的轻柴油的20组光谱曲线,计算其反射率光谱曲线随厚度变化的特征,并利用db4小波对反射率数据进行处理,突出光谱奇异性及其位置与奇异值随油膜厚度变化的特征。在研究范围内的油膜光谱反射率高于水体,但反射率值与油膜厚度间无固定增减关系。在其厚度小于6 μm时反射率光谱曲线无明显特征,厚度大于6 μm后在388 nm附近存在区别于水体的反射峰特征且随厚度增加特征愈加突出。油膜光谱小波分析后的细节系数在388~393 nm内表现出明显的奇异性,并且奇异位置随厚度增加向短波方向移动、奇异极值增大。研究证实了小波分析在确定油膜光谱特征位置与变化研究中的积极作用,并发现了紫外-可见光短波范围内的光谱特征,为紫外遥感进行溢油识别提供了科学依据。  相似文献   

12.
设计水中油类污染物检测仪,采用脉冲氙灯作为光源,选择阶跃型多模纯石英光纤对激发光和发射光进行传输。采用非对称Czemy-Turner光路的高精度光栅单色器。应用该装置测定柴油、汽油和煤油的荧光光谱,0#柴油、97#汽油和煤油的最佳激发波长/发射波长分别为:290/330,270/300和280/330 nm。检出限:柴油(0.025 mg·L-1)、汽油(0.042 mg·L-1)和煤油(0.054 mg·L-1)。相对误差:柴油(2.55%),汽油(2.06%)和煤油(1.71%),实验表明所设计的检测仪具有较高的测量精度。配置不同浓度的柴油、汽油和煤油的混合溶液,测量其三维荧光光谱,采用自加权交替三线性分解算法对光谱数据进行分解,预测浓度及回收率均表明自加权交替三线性分解算法对混合油类物质有较高的分辨能力。  相似文献   

13.
矿物油-乙醇溶液三维荧光光谱的实验研究   总被引:4,自引:0,他引:4  
研究了矿物油-乙醇溶液的三维荧光光谱特性。通过空白扣除法消除了乙醇的拉曼散射对矿物油三维荧光光谱的影响,而采用将瑞利散射及其附近区域置零的方法去除了瑞利散射对矿物油三维荧光光谱的影响。经校准,矿物油的三维荧光光谱特征荧光峰表现为:煤油主要为一个宽峰,最大激发/发射荧光峰的位置在270/290 nm附近;0#柴油有两个峰,最大激发/发射峰分别位于240/344 nm和270/362 nm附近;润滑油存在多个荧光峰,其中两个比较强的最大激发/发射峰分别位于240/348 nm和258/358 nm附近。此外,还研究了矿物油的荧光光谱强度与浓度的关系,并对测量的灵敏度和检测限进行了分析。研究表明,利用三维荧光光谱特征测量可以实现低浓度矿物油的测定。  相似文献   

14.
LiGaO2衬底上ZnO外延膜的结构与光学特性   总被引:3,自引:2,他引:1  
黄涛华  周圣明  滕浩  林辉  王军 《光学学报》2008,28(7):1420-1424
采用磁控溅射法在(001),(100)及(010)LiGaO2衬底上制备了ZnO薄膜,通过X射线衍射(XRD)、原子力显微镜(AFM)、透过光谱以及光致发光谱(PL)对薄膜的结构、形貌及光学性质进行了表征.结果表明LiGaO2衬底不同晶面上制备的ZnO薄膜具有不同的择优取向,在(001)、(100)及(010)LiGaO2上分别获得了[001]、[1100]及[1120]取向的ZnO薄膜;不同取向的ZnO薄膜表面形貌差异较大;薄膜在可见光波段具有较高的透过率;在ZnO薄膜的光致发光谱中只观察到了位于378 nm的紫外发射峰,而深能级发射几乎观察不到,(1100)取向的薄膜紫外发射峰强度最大,半高宽也最小,薄膜光致发光件质的差异丰要和晶粒尺寸有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号