首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
. The structure of thin 3,4,9,10-perylenetetracarb-oxylic-dianhydride (PTCDA) films on Cu(110) was studied by scanning tunnelling microscopy (STM) from submonolayer to monolayer coverage. While no long-range ordering was found after deposition at room temperature, the formation of a well-defined superstructure is observed after thermal annealing. It appears that the formation of the superstructure is driven by the interaction between the oxygen atoms of the PTCDA and the copper atoms of the substrate. While the distance between the molecules fits well to the atomic lattice of the Cu(110) surface along the [1[`([¯])]1[¯]\bar\Box1\Box]]0] direction, the mismatch along the [001] direction leads to a periodic buckling normal to the surface accompanied by a restructuring of the substrate.  相似文献   

2.
孙家涛  潘理达  胡昊  杜世萱  高鸿钧 《中国物理 B》2010,19(9):97809-097809
We investigate the electronic structures of one and two monolayer iron phthalocyanine (FePc) molecules on Au(111) surfaces. The first monolayer FePc is lying flat on the Au(111) substrate, and the second monolayer FePc is tilted at~15° relative to the substrate plane along the nearest neighbour [101ˉ] direction with a lobe downward to the central hole of the unit cell in the first layer. The structural information obtained by first-principles calculations is in agreement with the experiment results. Furthermore, it is demonstrated that the electronic structures of FePc molecules in one-monolayer FePc/Au(111) system are perturbed significantly, while the electronic structures of FePc molecules in the second monolayer in two-monolayer FePc/Au(111) system remain almost unchanged due to the screening of the buffer layer on Au(111).  相似文献   

3.
To date, the fastest lithium ion-conducting solid electrolytes known are the perovskite-type ABO3 oxide, with A = Li, La and B = Ti, lithium lanthanum titanate (LLTO) Li3x La( 2 \mathord
/ \vphantom 2 3 3 ) - x [¯]( 1 \mathord/ \vphantom 1 3 3 ) - x TiO3 {\rm Li}_{3x} {\rm La}_{\left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right) - x} \Box_{\left( {{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} \right) - x} {\rm TiO}_3 and its structurally related materials. In this formula, [¯]\Box represents the vacancy. These materials have attracted much attention due to their application in lithium ion batteries used as energy sources in microelectronic and information technologies. In addition to the well-established simple cubic, tetragonal and orthorhombic perovskite type distorted cell structures, the hexagonal unit cell was reported in a recent study for Li0.5 La0.5 TiO3 − δ , ( 0 £ d £ 0.06 )\left( {0 \le \delta \le 0.06} \right). We investigated the ionic conductivity in hexagonal La0.5 Li0.5 TiO3{\rm La}_{0.5} {\rm Li}_{0.5}\- {\rm TiO}_3 by molecular dynamics. We confirmed that ionic conductivity in this compound is due to the motion of lithium ions. We show that both Arrhenius and Vogel–Tamman–Fulcher-type relationships could be used to express the high-temperature conductivity of this compound. From our results, hexagonal LLTO exhibits almost 1.7–1.9 ×10 − 3 S cm − 1 at room temperature. Thus, due to its high ionic conductivity, this compound is expected to show some advantages in comparison with the best conductors of this family, for usual applications of ionic conductors.  相似文献   

4.
王芒芒  宁华  陶向明  谭明秋 《物理学报》2011,60(4):47301-047301
用密度泛函理论(DFT)研究了金属Au(110)表面结构以及氧原子的吸附状态.计算得到Au(110)-(1×2)缺列再构表面原子的弛豫分别是-15.0%(Δd12/d0)和-1.1%(Δd23/d0),表面能为52.7 meV/2,功函数Φ=5.00 eV;Au(110)-(1×3)缺列再构表面的Δd1 关键词: 缺列再构Au(110)表面 STM图像 氧原子吸附  相似文献   

5.
An analysis of LEED data from the Ag(111) surface at room temperature and 5° ? Θ ? 16°, φ = 12° has been carried out in order to test three different model potentials for the exchange and correlation part of the one-electron LEED potential. Clean Au(111) surfaces have been grown on Ag(111) at room temperature at a deposition rate of 0.15 Å s?1. Similar method of calculation and potentials have been employed for the Au overlay er on Ag(111). After the deposition of ? 2.5 monolayers of Au/Ag(111) the growth of Au can proceed in two different ways. One of them matches satisfactorily with the theoretical calculation for the Au(111) overlayer on Ag(111) following the fcc sequence. The other seems to be concerned with the diffusion of Ag during the Au growth. Similar curves have been obtained during the diffusion of Ag through 350 Å of Au(111).  相似文献   

6.
The initial stages of Ge growth on Si(111) vicinal surfaces tilted in the [ $\overline 1 \overline 1 2$ ] and [ $11\overline 2 $ ] directions were studied in situ in the temperature range 350–500°C using scanning tunneling microscopy. It was shown that, at low Ge deposition rates of 10?2 to 10?3 BL/min, ordered Ge nanowires can form on surfaces tilted in the [ $\overline 1 \overline 1 2$ ] direction under conditions of step-layered growth. The height of a nanosized Ge wire is one or three interplanar distances and is determined by the initial height of a silicon step. It was established that, during epitaxial growth, steps with a [ $11\overline 2 $ ] front are replaced by steps with a [ $\overline 1 \overline 1 2$ ] front. As a result, the step edge is serrated and the formation of smooth nanosized Ge wires uniform in width is hampered on the serrated Si(111) surfaces tilted in the [ $11\overline 2 $ ] direction.  相似文献   

7.
We conducted a comparative study of the pH‐dependent anchoring behaviors of 3‐methyl‐2‐benzothiazolinone hydrazone (3M2BH) and benzophenone hydrazone (BPH) on gold nanoparticles (AuNPs) by means of interfacial Raman spectroscopy. We found that several bands of 3M2BH in the highly alkaline pH region disappeared as the colloidal conditions became more neutral and acidic. The vibrational band at 919, 1174, and 1222 cm−1 at pH 10.0 disappeared below pH 9.2, which may be because of the hydrolysis reactions that cleave the labile N―NH2 group of 3M2BH, indicating a rather perpendicular orientation via the sulfur atom at the surfaces. A fairly high transition pH value was assumed to be because of the interaction of the N―NH2 group in the vicinity of the surfaces. Several characteristic bands, including 1584 and 1617 cm−1, also exhibited different intensities, suggesting that the adsorbates on Au surfaces underwent structural transformations of the N―NH2 group after the pH value became neutral or acidic. These changes were not observed for BPH, presumably because of the direct and robust binding of the hydrazone onto Au surfaces. Our results revealed that the pH‐dependent cleavage reactions may vary depending on the surface anchoring modes of the adsorbates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The growth and chemisorptive properties of monolayer films of Ag and Au deposited on both the Pt(111) and the stepped Pt(553) surfaces were studied using Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and low energy electron diffraction (LEED). AES studies indicate that the growth of Au on Pt(111) and Pt(553) and Ag on Pt(111) proceeds via a Stranski-Krastanov mechanism, whereas the growth of Ag on the Pt(553) surface follows a Volmer-Weber mechanism. Au dissolves into the Pt crystal bulk at temperatures > 800 K, whereas Ag desorbs at temperatures > 900 K. TDS studies of Ag-covered Pt surfaces indicate that the AgPt bond (283 kJ mol?1) is ~25 kJ mol?1 stronger than the AgAg bond (254 kJ mol?1). On the Pt(553) surface the Au atoms are uniformly distributed between terrace and step sites, but Ag preferentially segregates to the terraces. The decrease in CO adsorption on the Pt crystal surfaces is in direct proportion to the Ag or Au coverage. No CO adsorption could be detected for Ag or Au coverages above one monolayer at 300 K and 10?8 Torr. The heat of adsorption of CO on Pt is unaltered by the presence of Ag or Au.  相似文献   

9.
Au(110) surfaces with (1×2)-reconstruction have been investigated using perturbed -angular correlation (PAC) spectroscopy. From the two observed electric-field-gradient tensors at111In probe atoms, deposited at room temperature in a concentration of about 10–4 ML, the occupation of substitutional sites in the densely-packed rows along [110]-directions and ninefold coordinated sites within the (111)-oriented microfacets, respectively, can be concluded. Annealing to about 600 K leads to bulk migration of the In atoms, detected by an increase of probe atoms with cubic surroundings. Due to this behaviour the order-disorder transitions of these surfaces occurring atT c=649 K cannot be detected in our PAC experiments.  相似文献   

10.
Clean germanium surfaces inclined at small angles to (111), (100) and (110) planes were investigated by LEED. Surfaces with orientations close to (111) and (100) are stepped and regular steps are retained in the whole temperature range investigated.Steps with (111) terraces and edges towards [211] have a height of about one interplanar distance d111 at all temperatures, and steps with edges towards [211] have a height of about two interplanar distances below 500°C and of about one interplanar distance above 500°C. Steps with (100) terraces and edges in the [011] direction have a height about two interplanar distances d100. The surfaces with orientations close to (110) are facetted at room temperature. The (17 15 1) facets are present on the surfaces oriented in the [110] zone and the (10 9 2) facets on the surfaces oriented in the [001] zone. At high temperatures (about 480 and 770°C respectively) a reversible structural reconstruction of these surfaces into stepped ones takes place.  相似文献   

11.
We have employed Density Functional Theory calculations to study the adsorption of CN, CN? and KCN on Au(111) and Au(211) surfaces and compare the obtained results to CO. The adsorption of CN, CN?, and KCN are exothermic with respect to the gas-phase moieties, and the adsorption energy increases at steps. Our results show that the binding mechanism of CN? is different from that of CO. The projected LDOS indicates that the bond between the flat surface and CN shows very small overlap between metal and CN states. This overlap increases provided that extra charge is present or low-coordinated Au atoms are available. Charge transfer is analyzed via the Bader method and the Electron Localization Function. Both suggest that Au–CN bonding resembles that in the gas-phase [Au(CN)2]?, which has been identified as covalent. The present study justifies the mechanism described in the literature involving a first CN? adsorption, electron transfer to form AuCN, and second adsorption of a CN? to form the soluble species and dissolve gold atoms from low grade ores.  相似文献   

12.
Interfacial structures of cobalt(II) porphine (CoP) and [2,3,7,8,12,13,17,18‐octaethyl‐21H,23-H-porphine]cobalt(II) (CoOEP) have been studied on Au(111) electrode using electrochemical scanning tunneling microscopy (EC-STM), in-situ X-ray diffraction, and density functional theory (DFT) calculations. The adsorption of porphyrins affects the reconstruction of Au(111) surface. The adsorption of CoP causes a lifting of the reconstruction to a complete 1 × 1 structure of Au(111). On CoOEP modified Au(111), the unit cell periodicity of the reconstructed substrate structure expands compared with the √3 × 23 structure of bare Au(111). The same expanded substrate structure was observed on Au(111) modified with OEP without the coordinated Co ion; the coordinated metal ion of the adsorbed porphyrin molecule does not affect the substrate structure. This result indicates that the interaction of conjugated π electrons of porphyrin with the substrate is stronger than that of the coordinated Co ion. In-situ X-ray diffraction and DFT calculation support non-covalent interaction of porphyrins with the Au(111) surface.  相似文献   

13.
Clean surfaces of GaAs and GaP were studied by field-ion microscope (FIM). Field-ion images with ordered surfaces were first obtained in pure hydrogen, neon-50% hydrogen and pure neon gases at 78 K, by using channeltron electron multiplier arrays (CEMA). The field-ion images of GaAs were quite similar to those of GaP with respect to the surface structure and the image contrast. They showed the anisotropies of the ion emission and the surface structure between the [111] and [111] orientations. Ring steps expected from a spherical surface were observed on the (111) and {100} planes, but not on the [111] and {110} planes. The regional brightness of the FIM patterns was discussed in terms of the Knor and Müller model and the atomic and electronic structures of the surface. The image field of these crystals was much lower than that of metals usually used in FIM. For example, the image field strength for the hydrogen and GaAs system was about 1.1 V/Å. The reduction of the field necessary to image was also discussed in terms of the field penetration effect.  相似文献   

14.
We demonstrate an application of PAC to the study of magnetic ordering in random alloys. Using111Cd as a probe the spin-glass freezing inAuFe-alloys of different concentrations could be observed. In the Au82Fe18 alloy no indication of ferromagnetism above the freezing temperature was found, due to the fact that the111In probe nuclei are located in a Au rich environment.  相似文献   

15.
The temperature dependence of the quadrupole coupling constants of111CdIn,111CdSn, and120SbSn was measured by means of the perturbed angular correlation (distribution) technique. The results are discussed within a generalized model for the electric field gradient in nontransition metals.This work was supported by the Bundesministerium für Forschung und Technologie.  相似文献   

16.
We report a comparison of electric-field gradients (EFGs) measured at the group-III sites on epitaxially-grown surfaces of 2×2-reconstructed GaAs and InAs crystals. For this purpose, we used 111In→111Cd perturbed-angular-correlation (PAC) spectroscopy. Sharp spectral lines characterize the perturbation functions corresponding to both surfaces. On GaAs surface, we observe only one well-defined nuclear electric-quadrupole interaction (NQI); and on the InAs surface, we observe a primary and a secondary NQI. Very similar but experimentally-distinguishable values of the EFG-parameters characterize the primary interactions corresponding to the GaAs and InAs surfaces. Specifically, for the GaAs and InAs surfaces, ω Q =28.0±0.2 Mrad s−1 and η=0.43±0.02 and ω Q =28.8±0.2 Mrad s−1 and η=0.39±0.02, and the angles between EFG z-axis and the (111) direction are 65°±3° and β=53°±3°, respectively. These unexpected results indicate that the so-called lattice contribution to the EFG is not significant. Moreover, for the primary NQIs on both surfaces, the similar parameter values demonstrate that chemical differences between the 111In probe and the indigenous Ga surface atoms cause no large quantitative effects. This information indicates that impurity probes and PAC spectroscopy can be used effectively to investigate III–V surfaces. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
The structures of the reconstructed Ir(100), Pt(100) and Au(100) surfaces have been investigated. Low energy electron diffraction (LEED) patterns are analyzed and LEED intensity versus energy data are measured. A variety of structures is observed by LEED: Ir(100) exhibits a relatively simple (1 × 5) pattern; Pt(100) shows a series of closely related patterns, a typical representative of which has a (141?15) structure; Au(100) usually exhibits a c(26 × 68) pattern, often inaccurately described in the literature as a (20 × 5) pattern. The reconstruction of Au(111) is also considered for comparison. Various plausible structural models are discussed, while laser simulation is used to lessen the number of these models. The analysis is completed in a companion paper where LEED intensity calculations are reported to determine the atomic locations.  相似文献   

18.
The surface structure of In2O3(111) has been investigated by dynamical analysis of low energy electron diffraction data, in conjunction with first principles calculations using density functional theory. The experimental data set consisted of eight independent beams whose intensities were measured for incident energies in the range between 25 eV and 250 eV. In fitting the experimental data it was essential to treat the radii of In and O spheres as variable parameters: following this procedure a final Pendry R factor of 0.31 was obtained. The LEED results are compatible with the calculations and both analyses suggest that the surface structure involves only small vertical relaxations in the outermost of the {[O2?]1224?[In3+]1648+[O2?]1224?} quadrupolar units that define the (111) surface. The ab initio slab calculations also confirm that lateral relaxations not considered in fitting the experimental data are of very minor importance.  相似文献   

19.
Adsorption of several ionic and non-ionic species (OH?, O, O?, O2?, H, H+ and H?) on the low-index Miller Au(hkl) surfaces has been investigated by means of density functional theory based methods. The stability order for adsorptions on the three surfaces decreases with the increasing of the coordination number of the outermost gold atoms in each surface, i.e., Au(110) > Au(100) > Au(111), which is in agreement with the experimental evidences. The detailed COOPs analysis of the various adsorption sites for all adsorbates in the surface with the most stable adsorption(s), Au(110), evidenced that adsorption in the gold surfaces may be a function of particle size and charge and substantiates the variability in the order of preferences sites for the adsorption of the different species found in these low-index Miller Au(hkl) surfaces. This variability increases with the increasing of the stability of the adsorptions on the gold surfaces, i.e., the Au(110) presents more variability in the order of preferences sites for the adsorption of different species.  相似文献   

20.
The motion of single molecules on surfaces plays an important role in nanoscale engineering and bottom-up construction of complex devices at single molecular scale. In this article, we review the recent progress on single molecular rotors self-assembled on Au(111) surfaces. We focus on the motion of single phthalocyanine molecules on the reconstructed Au(111) surface based on the most recent results obtained by scanning tunneling microscopy (STM). An ordered array of single molecular rotors with large scale is self-assembled on Au(111) surface. Combined with first principle calculations, the mechanism of the surface-supported molecular rotor is investigated. Based on these results, phthalocyanine molecules on Au (111) are a promising candidate system for the development of adaptive molecular device structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号