首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We investigate characteristics of gold metal strip waveguides based on long range surface plasmon polaritons (LRSPPs) along thin metal strips embedded in a polymer for practical applications at the telecommunication wavelengths of 1.31 and 1.55 μm. Guiding properties of the gold strip waveguides are theoretically and experimentally evaluated with the limited thickness and width up to ∼20 nm and ∼10 μm, respectively. The lowest propagation loss of ∼1.4 dB/cm is obtained with a 14.5-nm-thick and 2-μm-wide gold strip at 1.55 μm. With a single-mode fiber, the lowest coupling loss of ∼0.4 dB/facet is achieved with a 14.5-nm-thick and 5-μm-wide gold strip at 1.55 μm. The lowest insertion losses are obtained 8-9 dB with 1.5 cm-long gold strips of a limited thickness and width at both the wavelengths. We demonstrate a 10 Gbps optical signal transmission via the LRSPP waveguide with a 14 nm-thick, 2.5 μm-wide, and 4 cm-long gold strip. These LRSPP waveguides have potential applications for optical interconnects and communications.  相似文献   

2.
The propagation of the HE11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered : hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed. These results are of interest for infrared lasers or waveguide applications and for Electron Cyclotron Wave (ECW) systems at the millimeter wavelength.  相似文献   

3.
A new passive TE/TM-mode polarization filter for an InP system based on an asymmetric twin waveguide and resonant coupling is investigated. Linear taper sections with different taper angles are introduced to couple between the two vertically separated waveguides. The underlying waveguide is designed to enable direct edge coupling from an optical fiber. At a wavelength of 1.55?μm power extinction ratios of 20 dB for the TE- and more than 10 dB for the TM-polarization are reported for devices shorter than 400?μm. An increased extinction ratio can be obtained by concatenating structures. Furthermore, we show this concept can be expanded to a polarization splitter.  相似文献   

4.
利用两路平行的刻有长周期光栅(LPWG)波导间耦合的理论模型,研究了LPWG波导光滤波器,利用弱耦合实现高耦合效率和窄带滤波的方法,设计了一个窄带光滤波器。仿真结果表明,在1 530~1 560 nm范围,能实现单一的带通、带阻互补滤波输出,3 dB带宽为1 nm,耦合效率高达98%。  相似文献   

5.
We propose a novel two-dimensional photonic crystal structure consisting of two line defect waveguides and a cavity to realize mode conversion based on the coupling effect. The W1/cavity/W2 structure breaks the spatial symmetry and successfully converts the even(odd) mode to the odd(even) mode in the W2 waveguide during the forward(backward)transmission. When considering the incidence of only the even mode, the optical diode effect emerges and achieves approximate 35 d B unidirectionality at the resonant frequency. Moreover, owing to the narrow bandpass feature and the flexibility of the tuning cavity, utilization of the proposed structure as a wavelength filter is demonstrated in a device with a Y-branch splitter. Here, we provide a heuristic design for a mode converter, optical diode, and wavelength filter derived from the coupling effect between a cavity and adjacent waveguides, and expect that the proposed structure can be applied as a building block in future all-optical integrated circuits.  相似文献   

6.
Ahn SW  Steier WH  Kuo YH  Oh MC  Lee HJ  Zhang C  Fetterman HR 《Optics letters》2002,27(23):2109-2111
We have demonstrated a hybrid Mach-Zehnder optical modulator consisting of a large-core, low-loss fluorinated passive polymer waveguide and an electro-optic (EO) polymer waveguide. The combination exhibits low fiber coupling loss to the passive waveguide and reduced transmission loss because the EO polymer waveguide is used only in the active region. The two waveguides are connected by vertical tapers that permit low-loss adiabatic coupling between the two modes. The half-wave voltage and the insertion loss of the fabricated modulator are 3.6 V and 6 dB, respectively, at a wavelength of 1.55 microm . The estimated coupling loss with the standard single-mode fiber is ~0.5 dB.  相似文献   

7.
王五松  张利伟  冉佳  张冶文 《物理学报》2013,62(18):184203-184203
基于理论分析, 实验研究了二维磁单负材料/双正材料/磁单负材料表面等离子波导的滤波效应. 研究表明, 该波导结构具有低通滤波性质, 引入分支缺陷之后, 由于谐振效应该波导具有带阻滤波效应. 分支缺陷相当于亚波长谐振腔, 谐振腔的长度决定带阻滤波器的中心频率, 而中心频率几乎不受缺陷位置的影响; 滤波器透射率下降的幅度由耦合距离决定. 通过引入谐振腔及改变谐振腔的长度、数量以及耦合间距等参数, 可以实现可调节的表面等离子波导滤波器. 实验结果与理论分析符合得很好, 该性质将在可调的单通道或多通道带阻滤波器件中具有潜在的应用价值. 关键词: 表面等离子激元 特异材料波导 谐振腔 滤波器  相似文献   

8.
For development of complementary metal–oxide–semiconductor (CMOS)-compatible integrated optical circuits, vertical directional coupling between a hybrid plasmonic slot waveguide and a Si waveguide is theoretically investigated in detail. To determine the vertical separation gap and efficient coupling length, we investigate the characteristics of the even and odd supermodes at a wavelength of 1.55 μm. The vertical coupler transfers 90% of the power carried by the Si waveguide to the hybrid plasmonic slot waveguide after normalizing to reference waveguides when the gap is 60 nm and the coupling length is 2.6 μm. Because of the lossy hybrid guided mode in the plasmonic waveguide, the transmitted power exhibits damped sinusoidal behavior depending on the overlapping length. The proposed vertical coupler shows more efficient light coupling between a dielectric and plasmonic waveguide in comparison to the other types of hybrid coupler, and can be exploited further for on-chip integrated opto-electronic circuits.  相似文献   

9.
Sun J  Gan Y  Xu C 《Optics letters》2011,36(4):549-551
Efficient cw 532?nm green-light generation is demonstrated using a periodically poled MgO:LiNbO3 ridge waveguide prepared by a process that combines annealed proton exchange and precise dicing. Performance of waveguides with different widths has been investigated. The 6-μm-wide, 1.6-cm-long uncoated ridge waveguide has achieved a green output power of 127?mW under a coupled fundamental light power of 250?mW. The highest conversion efficiency achieved is 53%.  相似文献   

10.
Direct‐write optical waveguide device fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics at the present time. Devices such as buried waveguides, power splitters, couplers, gratings, optical amplifiers and laser oscillators have all been demonstrated. This paper reviews the application of the femtosecond laser direct‐write technique to the fabrication of active waveguide devices in bulk glass materials.  相似文献   

11.
12.
Tu H  Marks DL  Koh YL  Boppart SA 《Optics letters》2007,32(14):2037-2039
Continuum generation from normally dispersive ultrahigh-numerical-aperture fibers deteriorates in relatively short times, limiting its application as a practical optical source for high-resolution optical coherence tomography. We find that reversible light-induced structural modification of fiber optic materials, rather than permanent optical damage, is responsible for this deterioration. By examining how the optical properties of corresponding light-induced waveguides depend on pumping wavelength, we isolate a waveguide that is beneficial for stable continuum generation. The performance deterioration due to the formation of other waveguides can be reversed by overwriting them with this particular waveguide.  相似文献   

13.
The design of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide is theoretically investigated in detail. It consists of two steps: the design of isolated plasmonic slot waveguide and silicon waveguide and the determination of the gap between the two waveguides and the length of a coupling region. The designed structure transfers 70.8% of the power carried by the silicon waveguide mode to the plasmonic slot waveguide mode when the gap is 150 nm and the coupling length is 2.14 μm. The wavelength dependence of our vertical directional coupler is also studied. The analysis shows that the amount of the transferred power changes slightly over a very wide wavelength range between 1.40 μm and 1.61 μm. Moreover, if we employ the fabrication technology for silicon photonics, it is quite tolerant to the variation of the length of its coupling section. Finally, the vertical directional coupler is considered for a polarizer.  相似文献   

14.
王小龙  张波 《应用光学》2009,30(5):739-742
使用Rsoft软件中的时域有限差分模块Fullwave分析二维介质波导和等离子波导耦合特性,利用软件仿真耦合结构并自动计算出光在介质波导和等离子波导中传输的耦合效率,进而测绘耦合效率随波导尺寸和光波长的变化曲线图,发现MDM导波结构的缝隙宽度和光通信质量密切相关,在确定尺寸下,传输损耗随传输距离成指数衰减.根据分析得到的耦合效率变化规律发现介质波导和等离子波导间距最佳点都应设为15 nm,进而优化波导的几何结构参数后,可以将耦合效率提高到83%.  相似文献   

15.
Zorzos AN  Boyden ES  Fonstad CG 《Optics letters》2010,35(24):4133-4135
Optical fibers are commonly inserted into living tissues such as the brain in order to deliver light to deep targets for neuroscientific and neuroengineering applications such as optogenetics, in which light is used to activate or silence neurons expressing specific photosensitive proteins. However, an optical fiber is limited to delivering light to a single target within the three-dimensional structure of the brain. We here demonstrate a multiwaveguide probe capable of independently delivering light to multiple targets along the probe axis, thus enabling versatile optical control of sets of distributed brain targets. The 1.45-cm-long probe is microfabricated in the form of a 360-μm-wide array of 12 parallel silicon oxynitride (SiON) multimode waveguides clad with SiO(2) and coated with aluminum; probes of custom dimensions are easily created as well. The waveguide array accepts light from a set of sources at the input end and guides the light down each waveguide to an aluminum corner mirror that efficiently deflects light away from the probe axis. Light losses at each stage are small (input coupling loss, 0.4 ± 0.3 dB; bend loss, negligible; propagation loss, 3.1 ± 1 dB/cm using the outscattering method and 3.2 ± 0.4 dB/cm using the cutback method; corner mirror loss, 1.5 ± 0.4 dB); a waveguide coupled, for example, to a 5 mW source will deliver over 1.5 mW to a target at a depth of 1 cm.  相似文献   

16.
Xu Y  Lee RK  Yariv A 《Optics letters》2000,25(10):755-757
We study adiabatic transformation in optical waveguides with discrete translational symmetry. We calculate the reflection and transmission coefficient for a structure consisting of a slab waveguide that is adiabatically transformed into a photonic crystal waveguide and then back into a slab waveguide. The calculation yields high transmission over a wide frequency range of the photonic crystal waveguide band and indicates efficient coupling between the slab waveguide and the photonic crystal waveguide. Other applications of adiabatic mode transformation in photonic crystal waveguides and the coupled-resonator optical waveguides are also discussed.  相似文献   

17.
Lin JD  Huang YZ  Yang YD  Yao QF  Lv XM  Xiao JL  Du Y 《Optics letters》2011,36(17):3515-3517
Optical bistability is realized in GaInAsP/InP coupled-circular resonator microlasers, which are fabricated by planar technology. For a coupled-circular resonator microlaser with the radius of 20?μm and a 2?μm-wide bus waveguide, hysteresis loops are observed for the output power coupling into an optical fiber versus the cw injection current at room temperature. The laser output spectra of the upper and lower states of the hysteresis loop indicate that the bistability is related to mode competitions. The optical bistability can be explained as the mode competition between the symmetry and antisymmetry coupled modes relative to the bus waveguide.  相似文献   

18.
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400?nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.  相似文献   

19.
Xiao Z  Luan F  Liow TY  Zhang J  Shum P 《Optics letters》2012,37(4):530-532
In this Letter, we propose general optimization methods to design broadband high-efficiency grating couplers for planar waveguides. We attribute the coupling bandwidth to the mismatch of effective indices between the diffracted beam and the actual grating structure around the operation wavelength for fiber to waveguide excitation. The coupling bandwidth formula is deduced. A simple parameter-separate optimization procedure is proposed for general layered grating couplers for high coupling efficiency. Using our principle, we optimized a grating coupler for a horizontal slot waveguide operating at wavelength 1.55 μm for TM polarization. The grating coupler has 1 dB bandwidth of 60 nm and coupling efficiency of 65% with incident light from single-mode optical fiber (SMF) at 8°.  相似文献   

20.
In photonic crystals, light propagation is forbidden in a certain wavelength range, the bandgap. In a two-dimensional crystal composed of parallel high-refractive index rods in a low-index background a line defect can be formed by removing a row of these rods, which can act as a waveguide for frequencies in the bandgap of the crystal. In order to get more insight into the main features of such waveguides we have studied a number of properties, using simulation tools based on the finite difference time domain method and a finite element Helmholtz solver. We show conceptually simple methods for determining the bandgap of the crystal as well as the dispersion of a waveguide for wavelengths in this bandgap. For practical applications, it is also important to know how much light can be coupled into the waveguide. Therefore, the coupling of light from a dielectric slab waveguide into the photonic crystal waveguide has been examined, showing that a coupling efficiency of up to 83% can be obtained between a silicon oxide slab and a waveguide in a crystal of silicon rods. Finally, calculations on an ultra-compact filter based on reflectively terminated side-branches of waveguides (similar to tuned stubs in microwave engineering) are shown and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号