首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamics of binding of two small hydrophobic ions such as norharman and tryptophan to neutral and negatively charged small unilamellar vesicles was investigated at pH 7.4 using fluorescence spectroscopy. Vesicles were formed at room temperature from dimyristoyl phosphatidylcholine (DMPC) or DMPC/dimyristoylphosphatidic acid and DMPC/dimyristoylphosphatidylglycerol. The changes in fluorescence properties were used to obtain association isotherms at variable membrane surface negative charge and at different ionic strengths. The binding of both ions was found to be quantitatively enhanced as the percentage of negative phospholipid increases in the membrane. Also, a decrease in ion binding was found to occur as the concentration of monovalent salt was increased (0.045-0.345 M). If electrostatic effects were ignored, the experimental data showed biphasic behavior in Scatchard plots. When electrostatic effects were taken into account by means of the Gouy-Chapman theory, the same data yielded linear Scatchard plots that were described by a simple partition equilibrium of the hydrophobic ion into the lipid-water interface. We demonstrate that the effective interfacial charge, nu, of the ion is a determinant factor to obtain a unique value of the intrinsic (hydrophobic) binding constant independently of the surface charge density of the lipid membrane.  相似文献   

2.
Capacitance of a self-assembled hexadecanethiol monolayer (SAM) film increased in aqueous solutions and decreased in ethanol solutions with the time on a few hours scale. The increase and the decrease were demonstrated to be ascribed, respectively, to desorption and adsorption of hexadecanethiol. They obeyed approximately the first-order rate law for the amount of the adsorbed thiol. The SAM is in equilibrium with the 5 μM hexadecanethiol ethanol solution. The SAM becomes stable when it is immersed in deionized water for a long time or heated in the deionized water.  相似文献   

3.
4.
Nanobubbles at the interface between water and a hydrophobic solid   总被引:1,自引:0,他引:1  
A very thin layer (5-80 nm) of gas phase, consisting of discrete bubbles with only about 40 000 molecules, is quite stable at the interface between a hydrophobic solid and water. We prepare this gas phase from either ambient air or from CO(2)(g) through a solvent exchange method reported previously. In this work, we examine the interface using attenuated total internal reflection infrared spectroscopy. The presence of rotational fine structure in the spectrum of CO(2) and D(2)O proves that molecules are present in the gas phase at the interface. The air bubbles are stable for more than 4 days, whereas the CO(2) bubbles are only stable for 1-2 h. We determine the average gas pressure inside the CO(2) bubbles from the IR spectrum in two ways: from the width of the rotational fine structure (P(gas) < 2 atm) and from the intensity in the IR spectrum (P(gas) = 1.1 +/- 0.4 atm). The small difference in gas pressure between the bubbles and the ambient (1 atm) is consistent with the long lifetime. The dimensions and curvature of a set of individual bubbles was determined by atomic force microscopy. The pressures of individual bubbles calculated from the measured curvature using the Laplace equation fall into the range P(gas) = 1.0-1.7 atm, which is concordant with the average pressure measured from the IR spectrum. We believe that the difference in stability of the CO(2) bubbles and the air bubbles is due to a combination of the much lower pressure of CO(2) in the atmosphere and the greater solubility of CO(2) in water, compared to N(2) and O(2). As expected, smaller bubbles have a shorter average lifetime than larger bubbles, and the average pressure and the curvature of individual bubbles decreases with time. Surface plasmon resonance measurements provide supporting evidence that the film is in the gas state: the thin film has a lower refractive index than water, and there are few common contaminants that satisfy this condition. Interfacial gas bubbles are not ubiquitous on hydrophobic solids: bubble-free and bubble-decorated hydrophobic interfaces can be routinely prepared.  相似文献   

5.
In this study, we report the effects of the alkyl chain length on alkanethiol-capped gold nanoparticle Langmuir films. Gold nanoparticles (2-3 nm) capped with C(n)H(2n+1)SH (n = 5-12, 14-16, 18) were prepared via a two-phase synthesis. The films were sampled by Langmuir-Schaefer horizontal transfer at various points in the pressure-area isotherm and monitored with transmission electron microscopy. Changes in surface pressure, temperature, and alkyl chain length did not lead to observable differences in the mesoscale film morphology. Pressure-area isotherms at 22 °C, however, revealed that the work of compression and the collapse pressure are directly dependent on alkyl chain lengths of 14 carbons or greater. Variable temperature isotherms suggest that the work of compression is strongly affected by the phase state (i.e., crystalline vs liquid-like) of the gold-thiolate self-assembled monolayer (SAM) capping the nanoparticles.  相似文献   

6.
7.
A theory, based on a modified Poisson-Boltzmann equation, is presented that allows us to calculate the excess interfacial tension of an electrolyte-oil interface accurately. The chaotropic (structure-breaking) ions are found to adsorb to the water-oil interface as the result of large polarizability, weak hydration, and hydrophobic and dispersion interactions. However, kosmotropic (structure-making) anions as well as potassium and sodium ions are found to be repelled from the interface. The adsorption of I(-) and ClO(4)(-) is found to be so strong as to lower the interfacial tension of the water-oil interface, in agreement with the experimental data. The agreement between the calculated interfacial tensions and the available experimental data is very good. The theory is used to predict the interfacial tensions of six other potassium salts, for which no experimental data is available at the moment.  相似文献   

8.
Nanobubbles give evidence of incomplete wetting at a hydrophobic interface   总被引:1,自引:0,他引:1  
The appearance of a hydrophobic surface, namely a crystalline (111) Si wafer coated with a thick soft polystyrene film, and the morphological changes along this interface depending on the polarity of an adjoining liquid phase were studied with magnetic tapping mode atomic force microscopy. Interfacially associated nanobubbles of decreasing size and number are observed as the hydrophobicity of the subphase increases. The disturbance of the water structure in the contact region induces the formation of nanobubbles. The topology of the interface is visualized, starting with the dry polymer under normal atmosphere conditions and observing the changes as air is replaced by a series of liquids. With water, the surface coverage of the substrate with bubbles is almost a close-packed configuration. The bubble shape is well approximated by spherical caps of a rather low aspect ratio. The Gaussian size distributions of bubble shape parameters are discussed. The contact angle of the nanobubbles is substantially smaller than the corresponding number measured for a macroscopic droplet. This apparent discrepancy might be resolved if the nanobubbles were assumed to exist along the interface as a connecting sublayer between a depleted water film at the hydrophobic polymer surface and an adsorbed macrodroplet.  相似文献   

9.
Hydrophobic bacteria, like colloidal solids, can spontaneously adsorb onto fluid-fluid interfaces and modify their mechanical properties. In this study, two strains of bacteria--Acinetobacter venetianus RAG-1 and Rhodococcus erythropolis 20S-E1-c--were prepared in their stationary (i.e. non-dividing) phase in the absence of biosurfactants; the cells were then used as emulsifiers to stabilize n-hexadecane droplets in aqueous environments. Using the micropipette technique, colloidal stability of the bacteria-coated droplets was examined through direct-contact experiments. Both types of bacteria were seen to function as effective stabilizers, although the Acinetobacter venetianus RAG-1 film provided stronger resistance to droplet-droplet coalescence. In addition to creating steric barriers, the adsorbed bacteria also interacted with one another at the interface, giving rise to higher order rheological properties. A technique of directly probing the mechanical properties of the emulsion drop surfaces (i.e. the adsorbed films) on the micrometre-scale revealed that (a) the films behaved as purely elastic sheets, and (b) with a reduction in cell concentration in the aqueous phase, less oil was emulsified, but the elastic moduli of the adsorbed films remained unchanged (suggesting an "all or none" adsorption process). These results are in contrast to a previous macroscopic (i.e. millimetre-scale) study, which showed that the absorbed films were viscoelastic, with the apparent elastic moduli depending strongly on cell concentration. The rheological properties of these bacteria-adsorbed interfaces appeared therefore to be length scale-dependent.  相似文献   

10.
We have used dynamic interfacial tension measurements to understand the structure of the ordered monolayer at the hexadecane/water interface induced by the presence of surfactant molecules. No abrupt changes in the interfacial tension (gamma) are observed during the expansion and contraction cycle below the interfacial ordering temperature (Ti) as observed for alkanes in contact with air. The lack of an abrupt change in gamma and the magnitude of this change during the expansion process indicate that the ordered phase may not be crystalline. The change in the interfacial tension is due to an increase in contact between water and hexadecane molecules and the disordering of the interfacial ordered layer. At low surfactant concentrations, the recovery of the interfacial tension is slower below Ti, suggesting that there is a critical surfactant concentration necessary to nucleate an ordered phase at the interface.  相似文献   

11.
The interfacial dilational viscoelastic properties of hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2-phenoxylethyl acrylate (POEA) (<1.0 mol%) at the octane-water interfaces were studied by means of the interfacial tension relaxation method. The dependencies of interfacial dilational elasticity and viscous component on the dilational frequency were investigated. The interaction of hydrophobically associating block copolymer [P(AM/POEA)] with sodium dodecyl sulfate (SDS) has been explored. The results show that at lower frequency, the dilational elasticity for different concentration copolymer is close to zero; at higher frequency, the dilational elasticity shows no change with increased frequency; At moderate frequency (10(-3)-1 Hz), the dilational elasticity decreased with a decrease in the dilational frequency. The results show that the hydrophobic groups of [P(AM/POEA)] chains can be associated by inter- or intrachain liaisons in water solution. The dilational viscous component for P(AM/POEA) comes forth a different maximum value at different frequencies when the polymer concentration is different. It is generally believed that the dilational viscous component reflects the summation of the various microscopic relaxation processes at and near the interface and different relaxation processes have different characteristic frequencies. The spectrum of dilational viscous component may appear more than once maximum values at different frequencies. The influence of SDS on the limiting dilational elasticity and viscous component for polymer solution was elucidated. For 5000 ppm polymer solution, the limiting dilational elasticity decreased with an increase in SDS concentration. The dilational viscous component passed through a maximum value with a rise in the dilational frequency, which appeared at different frequency when SDS concentration is different; and the higher is the concentration, the lower is the dilational frequency. It can be explained that macromolecules may be substituted by SDS molecules in the interface and the interaction of molecules decrease, which makes the limiting dilational elasticity decrease. For 200 ppm polymer solution, the limiting dilational elasticity increased firstly and then decreased with SDS concentration increasing. This may be explained that the interfacial polymer concentration is so low that SDS molecules absorbed in the interface dominate dilational properties of the interfacial film even at very low SDS concentration. However, SDS molecules can gradually substitute the polymer molecules in the interface with a rise in SDS concentration, which results in the decrease in the limiting dilational elasticity.  相似文献   

12.
The electrical potential oscillation at and the shape of the water/octanol interface were investigated using hydrophobic fluoroplastic containers. The interfacial potential between a water solution containing 1.5 mM sodium dodecyl sulfate (SDS) and an octanol solution containing 5 mM tetrabutylammonium chloride oscillated with an amplitude of 50-100 mV. The potential oscillation was also observed using a transparent fluoroplastic tube. The water/octanol interface shape was unchanged and no interfacial flow was observed during the oscillation. The interface shape was convex toward the octanol phase for 1.5 mM SDS, meaning that SDS adsorption to the wall was suppressed by the hydrophobic container. Therefore, the octanol system in a hydrophobic container enabled us to elucidate the electrical oscillation without any influence from the wall effect.  相似文献   

13.
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.  相似文献   

14.
The interfacial properties at well-ordered short-chain alkanethiol monolayer-aqueous interfaces are probed to understand the water structure near a hydrophobic surface. Monolayers of hexanethiol on highly oriented gold substrates have been prepared by various methods such as adsorption from alcoholic solution of the thiol, adsorption from neat thiol, and potential-controlled adsorption. The compactness and crystallinity of the monolayer have been probed using reflection-absorption infrared spectroscopy (RAIRS), atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical techniques. The presence of a thin layer of solvent with reduced density/dielectric constant (termed "drying transition") close to the methyl groups is identified. This is based on reduced interfacial capacitance observed in the presence of an aqueous electrolyte solution as compared to the expected value for a well-ordered monolayer-aqueous interface. Atomic force microscopy allows the determination of the variation in the dielectric constant of the solvent medium as a function of distance from the monolayer head group. The thickness of the transition layer (interphase) is found to be approximately 2 nm. The phenomenon of drying transition is not unique to water; preliminary studies indicate that formamide, which has a two-dimensional hydrogen-bonded network, shows similar characteristics.  相似文献   

15.
By molecular dynamics simulations, we have studied the hydrophilic-hydrophobic interface between water and n-hexane liquid phases. For all temperatures studied our computed interfacial tension agrees very well with the experimental value. However, the interfacial width calculated from capillary wave theory systematically overestimates the width obtained from fitting either the total density or composition profile. We rationalize the applicability of capillary wave theory for our system by reconsidering the usual value taken for the correlation length. This is motivated by the presence of order at the interface. Possible implications for recent experimental studies on the structure of model alkane-water interfaces are discussed, including the significance of the intrinsic width parameter.  相似文献   

16.
Compared to the dynamic mixing process used in melt blending operations, most techniques for measuring the interfacial tension can be considered as virtually static. For this reason, in order to measure the interfacial tension of an A-B immiscible system in the presence of an interfacial modifier, the problem of migrating the modifier to the interface is a central issue. In this study, the influence of the addition of an interfacial modifier, a polyethylene copolymer ionomer, on the interfacial tension between two high-density polyethylenes and a polyamide is investigated. The breaking thread method is used and the interfacial tension is measured as a function of ionomer content. In order to enhance the likelihood of placing the modifier in closer proximity to the interface, various sample preparations are compared. In all cases, the interfacial tension significantly drops with increasing ionomer content and tends to a limiting value. It is shown, however, that the preparation of the system for the breaking thread experiment via coextrusion using a conical die brings the modifier in closest proximity to the interface. With this approach an additional 1.45 times reduction of the interfacial tension at 10% compatibilizer concentration (based on the mass of HDPE) is observed compared to the classical technique of preparation. Confirmation of this effect is demonstrated using X-ray photoelectron spectroscopy where analysis of the thread surface of the system prepared by coextrusion indicates a more than fourfold enrichment of interfacial modifier. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1947–1958, 1998  相似文献   

17.
The dynamic interfacial tension for binary mixtures of hydrophobic metal ion extractants and a modifier were measured by using the drop volume technique. Four types of equimolar mixtures were considered: two chelating extractants: 2-hydroxy-5-nonylacetophenone oxime (HNAF) and beta-diketone (1-phenyldecan-1,3-dion), two solvating extractants: trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), chelating and solvating extractants TOPO and beta-diketone, and the chelating extractant HNAF and the modifier (decanol). With the aid of the Ward and Torday equation the values of the diffusion coefficients of individual compounds and their equimolar mixtures were estimated. It was found that in the case of two types of investigated mixtures, i.e., HNAF + beta-diketone and HNAF + decanol the compound HNAF that was dominant in the mixed adsorbed monolayer and the more interfacially active also determined the kinetics of adsorption in mixed systems. In contrary to the mixture of two chelating reagents, in the case of a mixture of two solvating extractants the mixed system behaves like the less active, though dominant at the interface, reagent TBP. The same effect was observed in both of the considered diluents (toluene and octane).  相似文献   

18.
Equilibrium interfacial tension at the liquid/liquid interfaces for two chelating metal ion extractants, 2-hydroxy-5-nonylacetophenone oxime (HNAF) and 1-phenyldecane-1,3-dion (beta-diketone), two solvating extractants, trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), and a modifier, decanol, were obtained with a drop volume tensiometer. Moreover, four equimolar binary mixtures of extractant/extractant and extractant/modifier type were considered. The composition of the mixed adsorbed monolayer and the molecular interaction parameters beta were determined by the Rosen equation. It was found that in all the studied systems coadsorption exists; however, synergism in the reduction of interfacial tension was not observed. The obtained results indicate that in the case of three mixtures considered the composition of a mixed monolayer at the hydrocarbon/water interface was quite different from that in the bulk organic phase. Only for the TOPO/beta-diketone mixture were the compositions at the interface and in the bulk organic phase similar. The obtained results indicate that it is impossible to predict the composition of a mixed monolayer by taking into account the interfacial activity of individual components of the mixture. In some cases the compound shows lower interfacial activity (smaller efficiency and effectiveness of adsorption) and occupies a dominant position at the interface, regardless of the type of hydrocarbon used as the organic diluent.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号