首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time-dependent wave packet method has been used to study different competing products of H(2)+H(2) collisions: four center reaction, collision induced dissociation, reactive dissociation, and three-body complex formation. A three-degree-of-freedom reduced dimensionality model has been used for five different geometries of the colliding complex (parallel H, crossed X, collinear L, and two T-shaped geometries T(I) and T(II)), with reactants in selected vibrational states with one diatom vibrationally "hot" and the other one vibrationally "cold." Product probabilities have been calculated using two potential energy surfaces [J. Chem. Phys. 101, 4004 (1994); J. Chem. Phys. 116, 666 (2002)] in order to compare their performance in the dynamics. The regions of the potential energy surfaces responsible of the threshold behavior of the probabilities have been identified. Overall, we have found that the most recent potential energy surface is less anisotropic, provides a smaller propensity for insertion-type processes, and gives lower energy thresholds.  相似文献   

2.
We report quantum diffusion Monte Carlo (DMC) and variational calculations in full dimensionality for selected vibrational states of H(5)O(2) (+) using a new ab initio potential energy surface [X. Huang, B. Braams, and J. M. Bowman, J. Chem. Phys. 122, 044308 (2005)]. The energy and properties of the zero-point state are focused on in the rigorous DMC calculations. OH-stretch fundamentals are also calculated using "fixed-node" DMC calculations and variationally using two versions of the code MULTIMODE. These results are compared with infrared multiphoton dissociation measurements of Yeh et al. [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)]. Some preliminary results for the energies of several modes of the shared hydrogen are also reported.  相似文献   

3.
An eight-dimensional time-dependent quantum dynamics wave packet approach is performed for the study of the H2+C2H-->H+C2H2 reaction system on a new modified potential energy surface (PES) [L.-P. Ju et al., Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows that the reactivity for this diatom-triatom reaction system is enhanced by vibrational excitations of H2, whereas the vibrational excitations of C2H only have a small effect on the reactivity. Furthermore, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agrees with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.  相似文献   

4.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

5.
The vibrational energy relaxation (VER) rates for H2 and D2 in liquid argon (T=152 K, rho=1.45x1022 cm-3) are calculated using the linearized semiclassical (LSC) method (J. Phys. Chem. 2003, 107, 9059, 9070). The calculation is based on Fermi's golden rule. The VER rate constant is expressed in terms of the quantum-mechanical force-force correlation function, which is then estimated using the LSC method. A local harmonic approximation (LHA) is employed in order to compute the multidimensional Wigner integrals underlying the LSC approximation. The H2-Ar and D2-Ar interactions are described by the three-body potential of Bissonette et al. (J. Phys. Chem. A 1996, 105, 2639). The LHA-LSC-based VER rate constants for both D2 and H2 are found to be about 2-3 orders of magnitude slower than those obtained experimentally. However, their ratio agrees quantitatively with the corresponding experimental result. In contrast, the classical VER rate constants are found to be 8-9 orders of magnitude slower than those obtained experimentally, and their ratio is found to be qualitatively different from the corresponding experimental result.  相似文献   

6.
Time-independent quantum mechanical (QM) and quasiclassical trajectory (QCT) scattering calculations have been carried out for the C(1D) + H2 --> CH + H reaction at a collision energy of 80 meV on a newly developed ab initio potential energy surface [B. Bussery-Honvault et al., Phys. Chem. Chem. Phys. 7, 1476 (2005)] of 1 1A" symmetry, corresponding to the second singlet state 1 1B1 of CH2. A general good agreement has been found between the QM and QCT rotational distributions and differential cross sections (DCSs). In both cases, DCSs are strongly peaked in the forward direction with a small contribution in the backward direction in contrast with those obtained on the 1 1A' surface, which are nearly symmetric. Rotational distributions obtained on the 1 1A" surface are somewhat colder than those calculated on the 1 1A' surface. The specific dynamics and the contribution of the 1 1A" surface to the overall reactivity of this system are discussed.  相似文献   

7.
We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the superthermal region. The two most recently published potential energy surfaces for the H(2)-H(2) complex, the so-called Diep-Johnson (DJ) [J. Chem. Phys. 112, 4465 (2000); 113, 3480 (2000)] and Boothroyd-Martin-Keogh-Peterson (BMKP) [J. Chem. Phys. 116, 666 (2002)] surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H(2)+H(2) collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H(2)-H(2) interaction. We found significant differences in rotational excitation/deexcitation cross sections computed on the two surfaces in collisions between two para-H(2) molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment B. Mate et al., [J. Chem. Phys. 122, 064313 (2005)] for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.  相似文献   

8.
State-to-state differential cross sections have been calculated for the hydrogen exchange reaction, H+H2-->H2+H, using five different high quality potential energy surfaces with the objective of examining the sensitivity of these detailed cross sections to the underlying potential energy surfaces. The calculations were performed using a new parallel computer code, DIFFREALWAVE. The code is based on the real wavepacket approach of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. The calculations are parallelized over the helicity quantum number Omega' (i.e., the quantum number for the body-fixed z component of the total angular momentum) and wavepackets for each J,Omega' set are assigned to different processors, similar in spirit to the Coriolis-coupled processors approach of Goldfield and Gray [Comput. Phys. Commun. 84, 1 (1996)]. Calculations for J=0-24 have been performed to obtain converged state-to-state differential cross sections in the energy range from 0.4 to 1.2 eV. The calculations employ five different potential energy surfaces, the BKMP2 surface and a hierarchical family of four new ab initio surfaces [S. L. Mielke, et al., J. Chem. Phys. 116, 4142 (2002)]. This family of four surfaces has been calculated using three different hierarchical sets of basis functions and also an extrapolation to the complete basis set limit, the so called CCI surface. The CCI surface is the most accurate surface for the H3 system reported to date. Our calculations of differential cross sections are the first to be reported for the A2, A3, A4, and CCI surfaces. They show that there are some small differences in the cross sections obtained from the five different surfaces, particularly at higher energies. The calculations also show that the BKMP2 performs well and gives cross sections in very good agreement with the results from the CCI surface, displaying only small divergences at higher energies.  相似文献   

9.
Ab initio calculations on the H(+)+NO system have been carried out in Jacobi coordinates at the multireference configuration interaction level employing Dunning's correlation-consistent polarized valence triple zeta basis set to analyze the role of low-lying electronic excited states in influencing the collision dynamics relevant to the experimental collision energy range of 9.5-30 eV. The lowest two adiabatic potential energy surfaces, asymptotically correlating to H(+)+NO(X (2)Pi) and H((2)S)+NO(+)(X (1)Sigma(+)), have been obtained. Using ab initio procedures, the (radial) nonadiabatic couplings and the mixing angle between the lowest two electronic states (1 (2)A' and 2 (2)A') have been obtained to yield the corresponding quasidiabatic potential energy matrix. The strengths of the computed vibrational coupling matrix elements reflect a similar trend, as has been observed experimentally in the magnitudes of the state-to-state transition probability for the inelastic vibrational excitations [J. Krutein and F. Linder, J. Chem. Phys. 71, 559 (1979); F. A. Gianturco et al., J. Phys. B 14, 667 (1981)].  相似文献   

10.
The possible existence of a complex-forming pathway for the H+O(2) reaction has been investigated by means of both quantum mechanical and statistical techniques. Reaction probabilities, integral cross sections, and differential cross sections have been obtained with a statistical quantum method and the mean potential phase space theory. The statistical predictions are compared to exact results calculated by means of time dependent wave packet methods and a previously reported time independent exact quantum mechanical approach using the double many-body expansion (DMBE IV) potential energy surface (PES) [Pastrana et al., J. Phys. Chem. 94, 8073 (1990)] and the recently developed surface (denoted XXZLG) by Xu et al. [J. Chem. Phys. 122, 244305 (2005)]. The statistical approaches are found to reproduce only some of the exact total reaction probabilities for low total angular momenta obtained with the DMBE IV PES and some of the cross sections calculated at energy values close to the reaction threshold for the XXZLG surface. Serious discrepancies with the exact integral cross sections at higher energy put into question the possible statistical nature of the title reaction. However, at a collision energy of 1.6 eV, statistical rotationally resolved cross sections managed to reproduce the experimental cross sections for the H+O(2)(v=0,j=1)-->OH(v(')=1,j('))+O process reasonably well.  相似文献   

11.
A global 12-dimensional ab initio interpolated potential energy surface (PES) for the SiH(4)+H-->SiH(3)+H(2) reaction is presented. The ab initio calculations are based on the unrestricted quadratic configuration interaction treatment with all single and double excitations together with the cc-pVTZ basis set, and the modified Shepard interpolation method of Collins and co-workers [K. C. Thompson et al., J. Chem. Phys. 108, 8302 (1998); M. A. Collins, Theor. Chem. Acc. 108, 313 (2002); R. P. A. Bettens and M. A. Collins, J. Chem. Phys. 111, 816 (1999)] is applied. Using this PES, classical trajectory and variational transition state theory calculations have been carried out, and the computed rate constants are in good agreement with the available experimental data.  相似文献   

12.
The reaction between HBr and OH leading to H(2)O and Br in its ground state is studied by means of a crossed molecular beam experiment for a collision energy varying from 0.05 to 0.26 eV, the initial OH being selected in the state |JOmega> = |3/2 3/2> by an electrostatic hexapole field. The reaction cross-section is found to decrease with increasing collision energy. This negative dependence suggests that there is no barrier on the potential energy surface for the formation pathway considered. The experimental results are compared with the previously reported quantum scattering calculations of Clary et al. (D. C. Clary, G. Nyman and R. Hernandez, J. Phys. Chem., 1994, 101, 3704), and briefly discussed in the light of skewed potential energy surfaces associated with heavy-light-heavy type reactions.  相似文献   

13.
New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.  相似文献   

14.
Detailed quasiclassical trajectory calculations of the reaction H+CH4(nu3 = 0,1)-->CH3 + H2 using a slightly updated version of a recent ab initio-based CH5 potential energy surface [X. Zhang et al., J. Chem. Phys. 124, 021104 (2006)] are reported. The reaction cross sections are calculated at initial relative translational energies of 1.52, 1.85, and 2.20 eV in order to make direct comparison with experiment. The relative reaction cross section enhancement ratio due to the excitation of the C-H antisymmetric stretch varies from 2.2 to 3.0 over this energy range, in good agreement with the experimental result of 3.0 +/- 1.5 [J. P. Camden et al., J. Chem. Phys. 123, 134301 (2005)]. The laboratory-frame speed and center-of-mass angular distributions of CH3 are calculated as are the vibrational and rotational distributions of H2 and CH3. We confirm that this reaction occurs with a combination of stripping and rebound mechanisms by presenting the impact parameter dependence of these distributions and also by direct examination of trajectories.  相似文献   

15.
New ab initio potential energy surfaces for the (2)Pi ground electronic state of the Ar-SH complex are presented, calculated at the RCCSD(T)/aug-cc-pV5Z level. Weakly bound rotation-vibration levels are calculated using coupled-channel methods that properly account for the coupling between the two electronic states. The resulting wave functions are analyzed and a new adiabatic approximation including spin-orbit coupling is proposed. The ground-state wave functions are combined with those obtained for the excited (2)Sigma(+) state [D. M. Hirst, R. J. Doyle, and S. R. Mackenzie, Phys. Chem. Chem. Phys. 6, 5463 (2004)] to produce transition dipole moments. Modeling the transition intensities as a combination of these dipole moments and calculated lifetime values [A. B. McCoy, J. Chem. Phys. 109, 170 (1998)] leads to a good representation of the experimental fluorescence excitation spectrum [M.-C. Yang, A. P. Salzberg, B.-C. Chang, C. C. Carter, and T. A. Miller, J. Chem. Phys. 98, 4301 (1993)].  相似文献   

16.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

17.
Recently, Carter and Handy [J. Chem. Phys. 113 (2000) 987] have introduced the theory of the reaction path Hamiltonian (RPH) [J. Chem. Phys. 72 (1980) 99] into the variational scheme MULTIMODE, for the calculation of the J=0 vibrational levels of polyatomic molecules, which have a single large-amplitude motion. In this theory the reaction path coordinate s becomes the fourth dimension of the moment-of-inertia tensor, and must be treated separately from the remaining 3N-7 normal coordinates in the MULTIMODE program. In the modified program, complete integration is performed over s, and the M-mode MULTIMODE coupling approximation for the evaluation of the matrix elements applies only to the 3N-7 normal coordinates. In this paper the new algorithm is extended to the calculation of rotational-vibration energy levels (i.e. J>0) with the RPH, following from our analogous implementation for rigid molecules [Theoret. Chem. Acc. 100 (1998) 191]. The full theory is given, and all extra terms have been included to give the exact kinetic energy operator. In order to validate the new code, we report studies on hydrogen peroxide (H2O2), where the reaction path is equivalent to torsional motion. H2O2 has previously been studied variationally using a valence coordinate Hamiltonian; complete agreement for calculated rovibrational levels is obtained between the previous results and those from the new code, using the identical potential surface. MULTIMODE is now able to calculate rovibrational levels for polyatomic molecules which have one large-amplitude motion.  相似文献   

18.
We present the results of a full-dimensional quantum mechanical study of the rovibrational energy transfer in the collision between ortho-H2 and para-H2 in the energy range of 0.1-1.0 eV. The multiconfiguration time-dependent Hartree algorithm has been used to propagate the wave packets on the global potential energy surface by Boothroyd et al. [J. Chem. Phys. 116, 666 (2002)] and on a modification of this surface where the short range anisotropy is reduced. State-to-state attributes such as probabilities or integral cross sections are obtained using the formalism of Tannor and Weeks [J. Chem. Phys. 98, 3884 (1993)] by Fourier transforming the correlation functions. The effect of initial rotation of the diatoms on the inelastic and de-excitation processes is investigated.  相似文献   

19.
The extrapolation method for determining benchmark quality full configuration-interaction energies described in preceding paper [L. Bytautas and K. Ruedenberg, J. Chem. Phys. 121, 10905 (2004)] is applied to the molecules H(2)O and N(2). As in the neon atom case, discussed in preceding paper [L. Bytautas and K. Ruedenberg, J. Chem. Phys. 121, 10905 (2004)] remarkably accurate scaling relations are found to exist between the correlation energy contributions from various excitation levels of the configuration-interaction approach, considered as functions of the size of the correlating orbital space. The method for extrapolating a sequence of smaller configuration-interaction calculations to the full configuration-interaction energy and for constructing compact accurate configuration-interaction wave functions is also found to be effective for these molecules. The results are compared with accurate ab initio methods, such as many-body perturbation theory, coupled-cluster theory, as well as with variational calculations wherever possible.  相似文献   

20.
A new exchange-Coulomb semiempirical model potential energy surface for the He-N2 interaction has been developed. Together with two recent high-level ab initio potential energy surfaces, it has been tested for the reliability of its predictions of second-virial coefficients and bulk transport phenomena in binary mixtures of He and N2. The agreement with the relevant available measurements is generally within experimental uncertainty for the exchange-Coulomb surface and the ab initio surface of Patel et al. [J. Chem. Phys. 119, 909 (2003)], but with slightly poorer agreement for the earlier ab initio surface of Hu and Thakkar [J. Chem. Phys. 104, 2541 (1996)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号