首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The bifurcation phenomenon whereby multiple-vortex secondary flow occurs in place of the normal two-vortex flow in laminar flow in curved ducts has previously been studied numerically by several researchers. However, the various results have been conflicting on many points. The present paper describes a set of numerical experiments conducted to study the effect of numerical accuracy on the solution. The results show that the transition from two- to four-vortex structure depends strongly on the differencing scheme and to a lesser extent on the grid size. The study also shows that as the Reynolds number of the flow increases, a two-vortex structure is re-established via a path which involves strongly asymmetric secondary flow patterns. These results are in agreement, at least qualitatively, with recent experimental theoretical and numerical results.  相似文献   

2.
Details of the turbulent flow in a 1:8 aspect ratio rectangular duct at a Reynolds number of approximately 5800 were investigated both numerically and experimentally. The three-dimensional mean velocity field and the normal stresses were measured at a position 50 hydraulic diameters downstream from the inlet using laser doppler velocimetry (LDV). Numerical simulations were carried out for the same flow case assuming fully developed conditions by imposing cyclic boundary conditions in the main flow direction. The numerical approach was based on the finite volume technique with a non-staggered grid arrangement and the SIMPLEC algorithm. Results have been obtained with a linear and a non-linear (Speziale) k–ε model, combined with the Lam–Bremhorst damping functions for low Reynolds numbers. The secondary flow patterns, as well as the magnitude of the main flow and overall parameters predicted by the non-linear k–ε model, show good agreement with the experimental results. However, the simulations provide less anisotropy in the normal stresses than the measurements. Also, the magnitudes of the secondary velocities close to the duct corners are underestimated. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
《Fluid Dynamics Research》1994,13(3-4):217-228
Dual solutions, i.e., two-vortex and four-vortex solutions, of the flow through a curved circular tube are numerically obtained by the spectral method for 0 ⩽ δ ⩽ 0.8 and 500 ⩽ Dn ⩽ 10000, where δ is the non-dimensional curvature of the tube and Dn the Dean number. It is found that the critical Dean number above which the four-vortex solution exists takes the lowest value 956 at δ = 0 and increases with δ. In terms of the Reynolds number of the flow, however, the critical Reynolds number decreases from infinity as δ increases from zero, takes the minimum value of about 250 at δ ≈ 0.52, and then increases again.  相似文献   

4.
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity field by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.  相似文献   

5.
A combined experimental and numerical investigation of flow control actuation in a short, rectangular, diffusing S-shape inlet duct using a two-dimensional tangential control jet was conducted. Experimental and numerical techniques were used in conjunction as complementary techniques, which are utilized to better understand the complex flow field. The compact inlet had a length-to-hydraulic diameter ratio of 1.5 and was investigated at a free-stream Mach number of 0.44. In contrast to the baseline flow, where the flow field was fully separated, the two-dimensional control jet was able to eliminate flow separation at the mid-span portion of the duct and changed considerably the three-dimensional flow field, and ultimately, the inlet performance. A comparison between the baseline (no actuation) and forced flow fields showed that secondary flow structures dominated both flow fields, which is inevitably associated with total pressure loss. Contrary to the baseline case, the secondary flow structures in the forced case were established from the core flow stagnating on the lower surface of the duct close to the aerodynamic interface plane. High fidelity spectral analysis of the experimental results at the inlet’s exit plane showed that the baseline flow field was dominated by pressure fluctuations corresponding to a Strouhal number based on hydraulic diameter of 0.26. Not only did the two-dimensional tangential control jet improve the time-averaged pressure recovery at the inlet exit plane (13.3% at the lower half of the aerodynamic interface plane), it essentially eliminated the energy content of the distinct unsteady fluctuations which characterized the baseline flow field. This result has several implications for the design of a realistic engine inlet; furthermore, it depicts that a single non-intrusive static pressure measurement at the surface of the duct can detect flow separation.  相似文献   

6.
Mould flow oscillations are of major importance for the performance of the continuous casting process. They are suspected to promote entrainment of slag and other unwanted secondary phases into the melt pool. These oscillating turbulent flows are investigated by means of numerical simulations. The numerical model is based on the equation of continuity and the unsteady Reynolds averaged Navier–Stokes equations. The system of flow equations is closed by a Reynolds stress turbulence model in combination with non‐equilibrium wall functions. The unsteady simulation resolves low‐frequency oscillations of the flow field. These frequencies and numerically resolved mean values are in agreement with results of corresponding model experiments. The proposed model should be advantageous in order to investigate the mechanisms of the oscillations and the process of slag entrainment in more detail. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A numerical and experimental study of the time-dependent hydrodynamic removal of a contaminated fluid from a cavity on the floor of a duct is presented. The duct flow has a parabolic inlet velocity profile and laminar flows are considered in a Reynolds number range between 50 and 1600 based on the duct height. The properties of the contaminated cavity fluid are assumed to be the same as for the fluid flowing in the duct. Attention is focussed on the convective transport of contaminated fluid out from the cavity and the effect of duct flow acceleration on the cleaning process. Passive markers which are convected with the flow are used in the numerical simulation for the purpose of identifying the contaminated cavity fluid. It is shown that the cleansing of the cavity is more pronounced during the unsteady start-up of the duct flow and the rate of cleaning decreases as the flow reaches a steady state. The cleaning process is enhanced as the cavity aspect ratio is increased and as the duct Reynolds number increases. A ‘volumetric’ approach based on the spread of markers is shown to be useful in determining the fraction of the cavity that remains contaminated after steady conditions have been reached. The distribution of the contaminant in a cavity during the unsteady stage and after steady conditions are reached are identified using passive markers.  相似文献   

8.
祝宝山 《力学学报》2008,40(1):9-18
采用快速拉格朗日涡方法数值模拟有复杂旋涡运动的非定常流动. 利用离散涡元模拟旋涡的产生、聚集和输送过程. 拉格朗日描述法用来计算离散涡元的移动,而移动速度则利用广义毕奥-萨伐尔公式结合快速多极子展开法计算,修正的涡半径扩散模型用来模拟离散涡元的黏性扩散. 突然起动圆柱和大攻角下突然起动翼型的非定常有涡流动的数值模拟,及其与试验结果的对比验证了方法的有效性. 另外,大攻角下突然起动翼型的计算结果给出了翼型起动后吸力面旋涡的产生、发展,周期性非定常流动的形成,以及尾流旋涡结构等一些重要的流动特征.[关键词] 非定常流有涡流动快速涡方法   相似文献   

9.
The present numerical study is on the fully developed bifurcation structure of forced convection in a tightly coiled duct of square cross-section and curvature ratio of 0.5 in a high Dean number region. Ten solution branches, two symmetric and eight asymmetric, are found. Among them, one symmetric branch and seven asymmetric branches have not been reported in the literature. On these new branches, the flow has a structural 2-, 4-, 5-, 6-, 7- or 8-cell. The mean friction factor and Nusselt number are different on various solution branches. In tightly coiled ducts, the secondary flow enhances the heat transfer more significantly than the friction increase.  相似文献   

10.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

11.
This paper analyses the accuracy and numerical stability of coupling procedures in aeroelastic modelling. A two-dimensional model problem assuming unsteady inviscid flow past an oscillating wall leads to an even simpler one-dimensional model problem. Analysis of different numerical algorithms shows that in general the coupling procedures are numerically stable, but care is required to achieve accuracy when using very few time steps per period of natural oscillation of the structure. The relevance of the analysis to fully three-dimensional applications is discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
The present work develops a numerical method for the solution of rotating internal weakly viscoelastic flows in rectangular ducts for dimensionless parameters such as the Reynolds, Rossby and Weissenberg numbers, taken respectively in the intervals between 171 and 12000, 0.047 and 1/12 and up to 1/10000. It is shown that the usual counter‐rotating double‐vortex configuration of secondary flow breaks down with the increase of the Reynolds number (over the threshold of 171). For higher Reynolds numbers such as 7500 and 12000 the secondary flow diffuses to the interior of the duct where it assumes a fully developed configuration and the transition to the turbulence structure is observed. The Sobolev norms increase almost proportionally to the increase of the Reynolds number, and play an essential role for more complex problems involving transition to turbulence modelling. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The structure of confined wakes behind a square cylinder in a channel is investigated via the numerical solution of the unsteady Navier–Stokes equations. Vortex shedding behind the cylinder induces periodicity in the flow field. Details of the phenomenon are simulated through numerical flow visualization. The unsteady periodic wake can be characterized by the Strouhal number, which varies with the Reynolds number and the blockage ratio of the channel. The periodicity of the flow is, however, damped in the downstream region of a long duct. This damping may be attributed to the influence of side walls on the flow structure.  相似文献   

14.
This experimental investigation deals with transition phenomena of a separated boundary layer under unsteady inlet flow conditions. The main purpose of this investigation is to understand the influence of the rotor-stator interaction in turbomachinery on the subsequent, highly loaded boundary layer. The research project is divided into two phases. In the first phase, which has been completed recently, only the variation of mean velocity caused by upstream blades was simulated in the experiments while the free-stream turbulence intensity was retained at a constant low level. The experiments are carried out in an Eifel-type wind tunnel to investigate the laminar separated boundary layer of a flat plate under oscillating inlet conditions. The adverse pressure gradient, similar to that of turbomachines, is generated by the contoured upper wall. The unsteadiness is produced by a rotating flap located downstream of the test section. The reduced frequency, the amplitude and the mean Reynolds number are varied to simulate the conditions prevailing in turbomachines. In addition to the Kelvin–Helmholtz instability of the separated shear layer, a lower frequency instability was observed. This is frequently referred to as `free shear layer flapping' and results in two distinctly different ways of re-attachment, depending primarily on the Reynolds number. For low momentum thickness Reynolds numbers at the separation point, large-scale vortices locked to the frequency of the unsteady main flow are identified. They originate nearly at the top of the separation bubble and are ejected downstream. A fully turbulent boundary layer develops after these vortices mix out. For higher Reynolds numbers, transition is completed within a short length of the free shear layer and there-attachment region. The characteristic momentum thickness Reynolds number separating these two regimes in unsteady flow is about 125. The Strouhal number (reduced frequency) does not appear to have any significant effect. Based on the experimental results, this behaviour is discussed in some detail. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The present paper evaluates two unsteady transition modelling approaches: the prescribed unsteady intermittency method PUIM, developed at Cambridge University and the dynamic unsteady intermittency method developed at Ghent University. The methods are validated against experimental data for the N3-60 steam turbine stator profile for steady and for unsteady inlet flow conditions. The characteristic features of the test case are moderately high Reynolds number and high inlet turbulence intensity, which causes bypass transition. The tested models rely both on the intermittency parameter and are unsteady approaches. In the prescribed method, the time-dependent intermittency distribution is obtained from integral relations. In the dynamic method, the intermittency distribution follows from time-dependent differential equations. For unsteady computations, self-similar wake profiles are prescribed at the inlet of the computational domain. Joint validation of the prescribed and the dynamic unsteady intermittency models against experimental data shows that both methods are able to reproduce the global features of the periodical evolution of the boundary layer under the influence of a periodically impinging wake. The overall quality of the dynamic method is better than that of the prescribed method.  相似文献   

16.
This paper is a theoretical treatment of the flow of a viscous incompressible fluid driven along a channel by steady uniform suction through porous parallel rigid walls. Many authors have found such flows when they are symmetric, steady and two-dimensional, by assuming a similarity form of solution due to Berman in order to reduce the Navier-Stokes equations to a nonlinear ordinary differential equation. We generalise their work by considering asymmetric flows, unsteady flows and three-dimensional perturbations. By use of numerical calculations, matched asymptotic expansions for large values of the Reynolds number, and the theory of dynamical systems, we find many more exact solutions of the Navier-Stokes equations, examine their stability, and interpret them. In particular, we show that most previously found steady solutions are unstable to antisymmetric two-dimensional disturbances. This leads to a pitchfork bifurcation, stable asymmetric steady solutions, a Hopf bifurcation, stable time-periodic solutions, stable quasi-periodic solutions, phase locking and chaos in succession as the Reynolds number increases.  相似文献   

17.
This paper investigates the flow pattern change in an annular jet caused by a sudden change in the level of inlet swirl. The jet geometry consists of an annular channel followed by a specially designed stepped‐conical nozzle, which allows the existence of four different flow patterns as a function of the inlet swirl number. This paper reports on the transition between two of them, called the ‘open jet flow high swirl’ and the ‘Coanda jet flow.’ It is shown that a small sudden decrease of 4% in inlet swirl results in a drastic and irreversible change in flow pattern. The objective of this paper is to reveal the underlying physical mechanisms in this transition by means of numerical simulations. The flow is simulated using the unsteady Reynolds‐averaged Navier–Stokes (URANS) approach for incompressible flow with a Reynolds stress turbulence model. The analysis of the numerical results is based on a study of different forces on a control volume, which consists of the jet boundaries. The analysis of these forces shows that the flow pattern change consists of three different regimes: an immediate response regime, a quasi‐static regime and a Coanda regime. The simulation reveals that the pressure–tangential velocity coupling during the quasi‐static regime and the Coanda effect at the nozzle outlet during the Coanda regime are the driving forces behind the flow pattern change. These physical mechanisms are validated with time‐resolved stereo‐PIV measurements, which confirm the numerical simulations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The flow over a normal plate with a long, downstream splitter plate is numerically studied with fine spatial and temporal resolutions. The time-dependent two-dimensional Navier-Stokes equations are integrated in time using a high-order, upwind-biased finite-difference scheme. Calculations are performed at several Reynolds numbers to study the evolution of the unsteady nature of the flow. Steady separated flow has been observed for Reynolds numbers up to 150, after which unsteady vortical structures are seen to develop from the shear layer. The time-mean flow characteristics in the steady and unsteady regimes are described. The calculations are seen to agree fairly well with experimental data at high Reynolds numbers.This work was supported by the Office of Naval Research under Grant N-00014-92-J-1640.  相似文献   

19.
The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.  相似文献   

20.
The flow developing in a tightly curved U-bend of square cross section has been investigated experimentally and via numerical simulation. Both long-time averages and time histories of the longitudinal (streamwise) component of velocity were measured using a laser-Doppler velocimeter. The Reynolds number investigated was Re = 1400. The data were obtained at different bend angles, θ, and were confined to the symmetry plane of the bend. At Re = 1400, the flow entering the bend is steady, but by θ = 90° it develops an oscillatory component of motion along the outer-radius wall. Autocorrelations and energy spectra derived from the time histories yield a base frequency of approximately 0.1 Hz for these oscillations. Flow-visualization studies showed that the proximity of the outer-radius wall served to damp the amplitude of the spanwise oscillations.

Numerical simulations of the flow were performed using both steady and unsteady version of the finite-difference elliptic calculation procedure of Humphrey et al. (1977). Although the unsteadiness observed experimentally does not arise spontaneously in the calculations, numerical experiments involving the imposition of a periodic time-dependent perturbation at the inlet plane suggest that the U-bend acts upon the incoming flow so as to damp the amplitude of the imposed oscillation while altering its frequency.

The oscillations observed experimentally, and numerically as a result of the periodic perturbation, have been linked to the formation of Goertler-type vortices of the outer-radius wall in the developing flow. The vortices, which develop as a result of the centrifugal instability of the flow on the outer-radius wall, undergo a further transition to an unsteady regime at higher flow rates.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号