首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of a suspension of a surface membrane enriched fraction prepared from confluent 3T3 cells to sparse 3T3 cells in culture results in a concentration dependent and saturable decrease in the rate of DNA synthesis. The inhibition of cell growth by membranes resembles the inhibition of cell growth observed at confluent cell densities by a number of criteria: 1) In both cases the cells are arrested in the G1 portion of the cell cycle; 2) the inhibition by membranes or by high local cell density can to a large extent be compensated for by raising the serum concentration or by addition of fibroblast growth factor plus dexamethasone. Membranes prepared from sparse cultures inhibit less well than membranes from confluent cultures in a manner which suggests that binding of membranes to cells is not by itself sufficient to cause inhibition of cell growth. The inhibitory activity has a subcellular distribution similar to phosphodiesterase (a plasma membrane marker) and appears to reside in one or more intrinsic membrane components. Maximally, membranes can arrest about 40% of the cell population in each cell cycle. Plasma membranes obtained from sparse 3T3 cells are less inhibitory than membranes obtained from confluent cells. This suggests either that the inhibitory component(s) in the plasma membrane responsible for growth inhibition may be in part induced by high cell density, or that this component(s) may be lost from these membranes during purification.  相似文献   

2.
Bovine milk contains growth promoting factors that stimulate DNA synthesis and cell division in confluent monolayers of quiescent Balb/c 3T3 cells. The growth factor activity was highest in colostrum obtained within 24 hours after birth of a calf. Samples of milk obtained 32 hours and 60 hours after birth were 20% and 1% as active respectively as was a sample obtained 8 hours after birth in stimulating DNA synthesis. No activity was detectable 3 days after birth or thereafter. A similar temporal dependence was found in sheep's milk. Bovine colostrum obtained on the day of a calf's birth can be substituted for serum and will support the growth of sparse Balb/c 3T3 cells to confluence. In Dulbecco's modified Eagles's medium (DMEM) supplemented with 2.5% (vol/vol) bovine colostrum, the number of Balb/c 3T3 cells in a dish increased 35-fold, from 2.0 X 10(4) cells to 7 X 10(5) cells. The generation time was approximately 38 hours. Proliferation of cells was characterized by formation of clusters of confluent Balb/c 3T3 cells which were smaller in size and more tightly packed than were Balb/c 3T3 cells grown to confluence in serum. No proliferation was detected in DMEM supplemented with milk obtained 10 days after birth of a calf or in DMEM supplemented with bovine serum albumen.  相似文献   

3.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

4.
Algal growth requires optimal irradiance. In photobioreactors, optimal light requirements change during the growth cycle. At low culture densities, a high incident light intensity can cause photoinhibition, and in dense algal cultures, light penetration may be limited. Insufficient light supply in concentrated algae suspensions can create zones of dissimilar photon flux density inside the reactor, which can cause suboptimal algal growth. However, growth of dense cultures can also be impaired due to photoinhibition if cells are exposed to excessively high light intensities. In order to simultaneously maintain optimal growth and photon use efficiency, strategies for light supply must be based on cell concentrations in the culture. In this study, a lipid-producing microalgal strain, Neochloris oleoabundans, was grown in batch photobioreactors. Growth rates and biomass concentrations of cultures exposed to constant light were measured and compared with the growth kinetic parameters of cultures grown using sequentially increasing light intensities based on increasing culture densities during batch growth. Our results show that reactors operated under conditions of sequential increase in irradiance levels yield up to a 2-fold higher biomass concentration when compared with reactors grown under constant light without negatively impacting growth rates. In addition, this tailored light supply results in less overall photon use per unit mass of generated cells.  相似文献   

5.
The enhanced ability of murine serum to support growth of 3T3 cells, when compared with fetal calf serum, is also evident on variants of 3T3 cells lacking the ability to bind epidermal growth factor (EGF). Variant 3T3 cell lines unable to bind EGF also retain a mitogenic response to fibroblast growth factor.  相似文献   

6.
C3H/10T1/2 mouse fibroblasts were grown to different cell densities either by plating at low density and allowing different growth periods, or by plating at a series of increasing densities and allowing the same growth period. These plates were UV irradiated at 7.5 J/m2 or mock irradiated and 24 h later infected with UV-irradiated Herpes simplex type I virus which had been UV irradiated at 50 or 125 J/m2 or mock irradiated. The numbers and sizes of plaques were measured and these data used to calculate the extent of UV-enhanced host cell reactivation, the capacity enhancement, the large plaque effect (LPE) and the small plaque effect (SME). The influence of cell density on these phenomena was similar for both series of density experiments. Ultraviolet-enhanced host cell reactivation could be demonstrated only for cultures of lower density. The capacity of the cells for Herpes simplex type I virus decreased with cell density, but UV irradiated cells showed an increase in capacity with cell density. Plaque sizes decreased in all cases with cell density but the LPE and SPE were not significantly altered. The greatest variation in the above parameters occurred just as the cells were approaching confluence, where most host cell reactivation experiments are carried out. We conclude that the reproducibility of such experiments depends critically on cell density, a dependence which may be relevant to mechanistic interpretations of the UV-dependent phenomena.  相似文献   

7.
35S-Labelled heparan sulfates derived from the culture medium (extracellular), a trypsinate of the cells (pericellular) and the cell residue (intracellular) of quiescent normal, proliferating normal or SV40-transformed 3T3 cells were analyzed for charge heterogeneity, by ion exchange chromatography and for self-affinity, by chromatography on heparan sulfate-agarose gels. Quiescent normal cells retained most of their heparan sulphate intra- or pericellularly. The surface-exposed material was charge heterogeneous and had a strong affinity for heparan sulfate. In cultures of growing cells and transformed cells most of the heparan sulfate was found in the medium. The heparan sulfate retained on the surface or growing cells had a lower self-affinity than did the corresponding material from normal and transformed cells. Although cell surface heparan sulfates from transformed cells showed affinity for a matrix substituted with the total heparan sulfate pool, the affinity for one particular subtype was much less pronounced or non-existent.  相似文献   

8.
12-O-Tetradecanoyl-phorbol-13-acetate (TPA), in the absence of serum, acts synergistically with a range of polypeptide growth factors to stimulate DNA synthesis in quiescent Swiss 3T3 cells. These growth factors include epidermal growth factor (EGF), insulin, and the peptide produced by BHK cells transformed by SV-40 virus (fibroblast-derived growth factor, FDGF). Retinoids also show mitogenic synergism with TPA or polypeptide growth factors. The spectrum of mitogenic synergisms displayed by TPA are similar to those of vasopressin, a pituitary peptide. However, TPA and vasopressin do not synergistically interact to stimulate DNA synthesis in quiescent 3T3 cells. This suggests that TPA and vasopressin act via an identical biochemical pathway. Several lines of evidence suggest rapid postreceptor convergence of the mitogenic mechanisms of action of the hormone and the tumor promotor. Thus, vasopressin and TPA both inhibit EGF binding to cellular receptors. Furthermore, TPA and vasopressin induce a similar array of early events in quiescent cells--most strikingly, identical stimulation of Rb+ influx. Stimulation of ion flux is suggested as the possible convergence point of the pathway by which TPA and vasopressin act as mitogens.  相似文献   

9.
Transport of amino acids into 3T3 and SV3T3 (SV40 virus-transformed 3T3) cells was measured on glass cover slips. The 3T3 and SV3T3 cells contain both A (alanine preferring) and L (leucine prefferring) systems for neutral amino acid transport. Initial rates of uptake of amino acids are about twofold higher in SV3T3 than in 3T3 cells. Other parameters measured, however, do not indicate marked differences in the transport of amino acids by the two cell types. L-system amino acids, such as leucine, are subject to trans-stimulation in both cell lines, whereas A-system amino acids, such as alanine and glycine, are not. Leucine was transported to higher levels in confluent cells than in nonconfluent cells. Glycine, however, shows distinctly less transport activity as the cells become confluent. Ehrlich ascites cell plasma membranes were prepared and assayed for amino acid-binding activity. Leucine-binding activity was detected by equilibrium dialysis in Triton X-100-treated membrane preparations.  相似文献   

10.
This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell-based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms should provide much greater control over cell microenvironment and rapid optimization of media composition using relatively small numbers of cells. Our platform exposes cells to a concentration gradient of growth factors under continuous flow, thus minimizing autocrine and paracrine signaling. Human NSCs (hNSCs) from the developing cerebral cortex were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor (GF) mixture containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). Proliferation and differentiation of NSCs into astrocytes were monitored by time-lapse microscopy and immunocytochemistry. The NSCs remained healthy throughout the entire culture period, and importantly, proliferated and differentiated in a graded and proportional fashion that varied directly with GF concentration. These concentration-dependent cellular responses were quantitatively similar to those measured in control chambers built into the device and in parallel cultures using traditional 6-well plates. This gradient-generating microfluidic platform should be useful for a wide range of basic and applied studies on cultured cells, including SCs.  相似文献   

11.
Abstract Goldfish cells (RBCF-1) cultured at different cell densities were harvested and their photorepair (PR) abilities were examined in terms of survival. Photorepair ability gradually increased during the phase of logarithmic growth, reaching a maximum in cells at the confluent state. This enhancement of PR ability disappeared 12 h after replating of cells in fresh medium. A number of growth-inhibiting treatments (serum depletion, UVC, hydroxyurea [HU], change in incubation temperature) were tested for their ability to induce PR. The treatment of cells with HU and serum depletion induced PR while the other treatments did not. The increase in the ability to perform PR after treatment with HU or serum depletion returned to normal levels more rapidly than that after fluorescent light treatment.  相似文献   

12.
Regulation of the Balb/c-3T3 cell cycle-effects of growth factors   总被引:7,自引:0,他引:7  
The platelet-derived growth factor (PDGF), which is found in serum but not in plasma, has been purified to homogeneity; it stimulates replication at a concentration of 10(-10) M. Brief treatment with PDGF causes density-inhibited Balb/c-3T3 cells to become competent to synthesize DNA; pituitary fibroblast growth factor (FGF) or precipitates of calcium phosphate also induce competence. Continuous treatment with plasma allows competent, but not incompetent, cells to synthesize DNA. A critical component of plasma is somatomedin, a group of hormones with insulin-like activity; multiplication-stimulating activity (MSA) or insulin replace plasma somatomedin in promoting DNA synthesis. We have studied the molecular correlates of competence and the role of SV40 gene A products in regulating DNA synthesis. Treatment of quiescent cells with pure PDGF or FGF causes the preferential synthesis of five cytoplasmic proteins (approximate molecular weight 29,000, 35,000, 45,000, 60,000, and 72,000 detected by SDS-PAGE under reducing conditions). Two of these competence-associated proteins (29,000 and 35,000 daltons) are insulin, or epidermal growth factor (EGF). PDGF, FGF, or calcium phosphate induce an ultrastructure change within the centriole of 3T3 cells; this ultrastructural modification of the centriole is detectable by immunofluorescence within 2 h or PDGF treatment. Plasma, EGF, or MSA do not modify the centriole. SV40 induces replicative DNA synthesis in growth-arrested 3T3 cells but does not cause this alteration in centriole structure. Gene A variants of SV40, including a mutant with temperature-sensitive (ts) T-antigen (ts A209), a deletion in t-antigen (dl 884), and several ts A209 strains containing t-antigen deletions were used to induce DNA synthesis in Balb/c-3T3 cells. Like wild type SV40, all strains induced DNA synthesis equally well under permissive or nonpermissive conditions. Addition of PDGF or plasma had little effect on SV40-induced DNA synthesis. Thus, the viral function that induces replicative DNA synthesis in Balb/c-3T3 cells. Like wild type SV40, all strains induced DNA synthesis equally well under permissive or nonpermissive conditions. Addition of PDGF or plasma had little effect on SV40-induced DNA synthesis. Thus, the viral function that induces replicative DNA synthesis in Balb/c-3T3 cells is not t and is not temperature sensitive. This SV40 gene function overrides the cellular requirement for hormonal growth factors. It does not induce transient centriole deciliation, a hormonally regulated event.  相似文献   

13.
The culture of cells in a microbioreactor can be highly beneficial for cell biology studies and tissue engineering applications. The present work provides new insights into the relationship between cell growth, cell morphology, perfusion rate, and design parameters in microchannel bioreactors. We demonstrate the long-term culture of mammalian (human foreskin fibroblasts, HFF) cells in a microbioreactor under constant perfusion in a straightforward simple manner. A perfusion system was used to culture human cells for more than two weeks in a plain microchannel (130 microm x 1 mm x 2 cm). At static conditions and at high flow rates (>0.3 ml h(-1)), the cells did not grow in the microchannel for more than a few days. For low flow rates (<0.2 ml h(-1)), the cells grew well and a confluent layer was obtained. We show that the culture of cells in microchannels under perfusion, even at low rates, affects cell growth kinetics as well as cell morphology. The oxygen level in the microchannel was evaluated using a mass transport model and the maximum cell density measured in the microchannel at steady state. The maximum shear stress, which corresponds to the maximum flow rate used for long term culture, was 20 mPa, which is significantly lower than the shear stress cells may endure under physiological conditions. The effect of channel size and cell type on long term cell culture were also examined and were found to be significant. The presented results demonstrate the importance of understanding the relationship between design parameters and cell behavior in microscale culture system, which vary from physiological and traditional culture conditions.  相似文献   

14.
We studied the topographical effect of roughness displayed by a closely packed particle monolayer on formation of a cell monolayer (cell sheet). Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527nm (SA053) and 1270nm (SA127) in diameter. Human umbilical vein endothelial cells (HUVECs) were seeded at a high density (2.0 x10(5)cells/cm(2)) onto particle monolayers. It was found that cells gradually became into contact with adjacent cells on the SA053 monolayer and the formed cell sheet could be readily detached from the particle monolayer by gentle pipetting. On the other hand, cells adhering onto the tissue culture polystyrene (TCPS) and the SA127 particle monolayer were difficult to peel off. At a low cell seeding density (5.0x10(4)cells/cm(2)), pre-coating with bovine plasma fibronectin (FN) allowed cell growth on an SA053 particle monolayer, and a confluent monolayer was able to be peeled as a cell sheet from the particle monolayer just by pipetting. By immunostaining of human fibronectin, we found that fibronectin was secreted and concentrated onto the substrate side of a cell sheet. The obtained cell sheet adhered and grew on the TCPS again within 20min.  相似文献   

15.
The role of the binding of succinylated concanavalin A to tissue culture cells in influencing epidermal growth factor (EGF)-mediated cell proliferation has been studied. Succinylated concanavalin A dramatically reduces the stimulation of 3T6 cells by EGF in Dulbecco's modified Eagle's medium (DME) containing insulin and vitamin B12 as additional growth factors, but no serum. Furthermore, binding studies using 125I-labeled EGF have shown that the binding of EGF to the cell surface is reduced upon addition of succinylated concanavalin A.  相似文献   

16.
Regenerative medicine for repairing damaged body tissues has recently become critically important. Cell culture scaffolds are required for the control of cell attachment, proliferation, and differentiation in in vitro cell cultures. A new strategy to control cell adhesion, morphology, and proliferation was developed by culturing mouse osteoblast-like MC3T3-E1 cells on novel cell culture scaffolds fabricated using ordered nanometer-sized pores (100, 300, 500, and 1000 nm). Results of this study indicate that after 72 h of incubation, the number of cells cultured on a silica film with a pore size of 1000 nm was similar to or slightly lower than that cultured on a non-porous control silica film. Films with 100-500 nm pore sizes, however, resulted in the cell growth inhibition. Morphology of the cultured cells revealed increased elongation and the formation of actin stress fibers was virtually absent on macroporous silica films with 100-500 nm pore size. Vinculin molecules expressed in cells cultured on the non-porous silica films showed many clear focal adhesions, whereas focal contacts were insufficiently formed in cells cultured on macroporous films. The influence of hydroxyapatite (HAp) and alumina scaffolds on the behavior of MC3T3-E1 cells was also evaluated. The proliferation rate of MC3T3-E1 cells cultured on HAp films with 1000 nm pore size was increased to approximately 20% above than that obtained of cells cultured on non-porous HAp films. These results demonstrate that the pore size and constituents of films play a role in controlling the morphology and proliferation rate of MC3T3-E1 cells.  相似文献   

17.
The ATR protein kinase has well-described roles in maintaining genomic integrity during the DNA synthesis phase of the cell cycle. However, ATR function in cells that are not actively replicating DNA remains largely unexplored. Using HaCaT and telomerase-immortalized human keratinocytes maintained in a confluent, nonreplicating state in vitro, ATR was found to be robustly activated in response to UVB radiation in a manner dependent on the nucleotide excision repair factor and DNA translocase XPB. Inhibition of ATR kinase activity under these conditions negatively impacted acute cell survival and cytotoxicity and severely inhibited the ability of UVB-irradiated HaCaT keratinocytes to proliferate upon stimulation with growth factors. Furthermore, ATR kinase inhibition in quiescent HaCaT keratinocytes potentiated UVB mutagenesis at the hypoxanthine phosphoribosyltransferase locus. Though ATR inhibition did not impact the rate of removal of cyclobutane pyrimidine dimers from genomic DNA, elevated levels of PCNA mono-ubiquitination and chromatin-associated PCNA and RPA indicate that excision gap-filling synthesis was altered in the absence of ATR signaling. These results indicate that the ATR kinase plays important roles in preventing mutagenesis and in promoting the proliferative potential of quiescent keratinocytes exposed to UVB radiation.  相似文献   

18.
Polyene antibiotics such as filipin selectively inhibit wheat germ agglutinin-induced agglutination of transformed and malignant cells compared to normal cells (Hatten ME, Burger MM: Biochemistry 18: 739, 1979). Since filipin binds specifically to cholesterol, we measured cholesterol levels in 3T3 cells and SV101-3T3 cells. SV101-3T3 cells contained 50-100% more cholesterol per cell than 3T3 cells. Both cell types were starved for cholesterol by growth in lipid-depleted medium plus 25-hydroxycholesterol. The cholesterol level of SV101-3T3 cells decreased by 30-50%, while the level in 3T3 cells remained constant. Filipin-stained SV101-3T3 cells revealed bright patches of filipin under fluorescence microscopy. These patches were absent in 3T3 cells and in SV101-3T3 and 3T3 cells starved for cholesterol. We selectively labeled plasma membranes of these cells with a spin label analog of phosphatidylcholine. The spin label indicated differences in plasma membrane fluidity that may be related to the different cholesterol levels in 3T3 and SV101-3T3 cells.  相似文献   

19.
To study the effect of extremely low frequency (ELF) magnetic fields on cell growth, human cells (AMA cells) and K14 skin fibroblasts cells, growing in monolayer culture, were exposed to a sinusoidal 50 Hz, 80 μT field. Exposure times varied from 15 to 90 min. Changes in cell proliferation rates were then studied during subsequent field-free incubation, for 24 h.The results showed that a 30 min exposure resulted in a much higher increase in proliferation rates in the AMA cells compared with non-exposed cells or cells exposed to electromagnetic fields for shorter or longer times. The magnitude of the increase also depended on the initial proliferation rate and confluency. The exposure to varying field densities showed that the greatest increase in proliferation occurred at 80 μT.  相似文献   

20.
In vitro cell migration assays are useful for screening bioactive agents that regulate angiogenesis, tumor metastasis, would healing, and immune responses by effecting changes in the rate of cell migration. Here we have developed a noninvasive in vitro migration assay that operates through release of confluent groups of cells initially confined within patterns of cell-resistant polyelectrolyte. Cell-resistant patterns of polyelectrolyte, separating groups of confluent cells, are rendered cell adhesive by adsorption of a second, cell adhesive polyelectrolyte of opposite charge; thereby, resulting in migration of cells into the separating regions. By dynamically controlling cell-surface interactions through self-assembly of cell-adhesive and cell resistant polyelectrolytes, this method eliminates the need to mechanically wound cells, as is done in current cell migration assays. The utility of this technique in identifying molecules and mechanisms that regulate cell migration is demonstrated by its application as an assay for the effects of platelet derived growth factors, cytoskeleton disrupting agents, and Merlin overexpression, on the migration of NIH 3T3 fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号