首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the space of complete and separable metric spaces which are equipped with a probability measure. A notion of convergence is given based on the philosophy that a sequence of metric measure spaces converges if and only if all finite subspaces sampled from these spaces converge. This topology is metrized following Gromov’s idea of embedding two metric spaces isometrically into a common metric space combined with the Prohorov metric between probability measures on a fixed metric space. We show that for this topology convergence in distribution follows—provided the sequence is tight—from convergence of all randomly sampled finite subspaces. We give a characterization of tightness based on quantities which are reasonably easy to calculate. Subspaces of particular interest are the space of real trees and of ultra-metric spaces equipped with a probability measure. As an example we characterize convergence in distribution for the (ultra-)metric measure spaces given by the random genealogies of the Λ-coalescents. We show that the Λ-coalescent defines an infinite (random) metric measure space if and only if the so-called “dust-free”-property holds.  相似文献   

2.
Large deviation principles are established for the Fleming–Viot process with neutral mutation and with selection, and the associated equilibrium measures as the sampling rate approaches zero and when the state space is equipped with the weak topology. The path-level large deviation results improve the results of Dawson and Feng (1998, Stochastic Process. Appl. 77, 207–232) in three aspects: the state space is more natural, the initial condition is relaxed, and a large deviation principle is established for the Fleming–Viot process with selection. These improvements are achieved through a detailed study of the behaviour near the boundary of the Fleming–Viot process with finite types.  相似文献   

3.
We show uniqueness of the spine of a Fleming–Viot particle system under minimal assumptions on the driving process. If the driving process is a continuous time Markov process on a finite space, we show that asymptotically, when the number of particles goes to infinity, the distribution of the spine converges to that of the driving process conditioned to stay alive forever, the branching rate for the spine is twice that of a generic particle in the system, and every side branch has the distribution of the unconditioned generic branching tree.  相似文献   

4.
We consider measure-valued processes with constant mass in Hilbert space. The stochastic flow which carries the mass satisfies a stochastic differential equation with coefficients depending on the mass distribution. This mass distribution can be considered as the conditional distribution of the solution of a certain SDE. In contrast to the filtration equation, in our case the random measure cannot diffuse: a single particle cannot break up or turn into clouds. The Markov structure of the measure-valued processes obtained is studied and a comparison with Fleming–Viot processes is presented.  相似文献   

5.
We consider the empirical measures of multi-type voter models with mutation on large finite sets, and prove their weak atomic convergence in the sense of Ethier and Kurtz (1994) toward a Fleming–Viot process. Convergence in the weak atomic topology is strong enough to answer a line of inquiry raised by Aldous (2013) concerning the distributions of the corresponding entropy processes and diversity processes for types.  相似文献   

6.
We consider a jump‐diffusion process describing a system of diffusing particles that upon contact with an obstacle (catalyst) die and are replaced by an independent offspring with position chosen according to a weighted average of the remaining particles. The obstacle is a bounded nonnegative function V(x) and the birth/death mechanism is similar to the Fleming‐Viot critical branching. Since the mass is conserved, we prove a hydrodynamic limit for the empirical measure, identified as the solution to a generalized semilinear (reaction‐diffusion) equation, with nonlinearity given by a quadratic operator. A large‐deviation principle from the deterministic hydrodynamic limit is provided. The upper bound is given in any dimension, and the lower bound is proven for d = 1 and V bounded away from 0. An explicit formula for the rate function is provided via an Orlicz‐type space. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
We present in this article a very adapted finite volume numerical scheme for transport type‐equation. The scheme is an hybrid one combining an anti‐dissipative method with down‐winding approach for the flux (Després and Lagoutière, C R Acad Sci Paris Sér I Math 328(10) (1999), 939–944; Goudon, Lagoutière, and Tine, Math Method Appl Sci 23(7) (2013), 1177–1215) and an high accurate method as the WENO5 one (Jiang and Shu, J Comput Phys 126 (1996), 202–228). The main goal is to construct a scheme able to capture in exact way the numerical solution of transport type‐equation without artifact like numerical diffusion or without “stairs” like oscillations and this for any regular or discontinuous initial distribution. This kind of numerical hybrid scheme is very suitable when properties on the long term asymptotic behavior of the solution are of central importance in the modeling what is often the case in context of population dynamics where the final distribution of the considered population and its mass preservation relation are required for prediction. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1114–1142, 2017  相似文献   

8.
An implicit Euler finite‐volume scheme for a degenerate cross‐diffusion system describing the ion transport through biological membranes is proposed. The strongly coupled equations for the ion concentrations include drift terms involving the electric potential, which is coupled to the concentrations through the Poisson equation. The cross‐diffusion system possesses a formal gradient‐flow structure revealing nonstandard degeneracies, which lead to considerable mathematical difficulties. The finite‐volume scheme is based on two‐point flux approximations with “double” upwind mobilities. The existence of solutions to the fully discrete scheme is proved. When the particles are not distinguishable and the dynamics is driven by cross diffusion only, it is shown that the scheme preserves the structure of the equations like nonnegativity, upper bounds, and entropy dissipation. The degeneracy is overcome by proving a new discrete Aubin–Lions lemma of “degenerate” type. Numerical simulations of a calcium‐selective ion channel in two space dimensions show that the scheme is efficient even in the general case of ion transport.  相似文献   

9.
Nonlocal Lotka–Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Is it possible to describe the dynamics of the limiting concentration points and of the weights of the Dirac masses? What is the long time asymptotics of these Dirac masses? Can several Dirac masses co-exist?

We will explain how these questions relate to the so-called “constrained Hamilton–Jacobi equation” and how a form of canonical equation can be established. This equation has been established assuming smoothness. Here we build a framework where smooth solutions exist and thus the full theory can be developed rigorously. We also show that our form of canonical equation comes with a kind of Lyapunov functional.

Numerical simulations show that the trajectories can exhibit unexpected dynamics well explained by this equation.

Our motivation comes from population adaptive evolution a branch of mathematical ecology which models Darwinian evolution.  相似文献   

10.
We propose a type-dependent branching model with mutation and competition for modelling phylogenies of a virus population. The competition kernel depends on the total mass, the types of the virus particles, and the genetic information available through the number of nucleotide substitutions separating the virus particles. We consider evolving phylogenies in the huge population, short reproduction time and frequent mutation regime, show tightness in the space of marked metric measure spaces and characterize the limit through a martingale problem. Due to heterogeneity in the branching rates, the phylogenies are not ultra-metric. We therefore develop new techniques for verifying compact containment.  相似文献   

11.
We consider second-order parabolic equations describing diffusion with degeneration and diffusion on singular and combined structures. We give a united definition of a solution of the Cauchy problem for such equations by means of semigroup theory in the space L 2 with a suitable measure. We establish some weight estimates for solutions of Cauchy problems. Estimates of Nash–Aronson type for the fundamental solution follow from them. We plan to apply these estimates to known asymptotic diffusion problems, namely, to the stabilization of solutions and to the “central limit theorem.”  相似文献   

12.
A theoretical method based on the concept of “system‐sized expansion” is applied to a generalization of Bartholomew's model of diffusion of information in a population of size N. The model considers a combination of mass‐mediated and interactively mediated messages, with the provision that the spreaders of information may not remain active for an indefinite period of time; it also takes into account the possibility that the parameters governing the process be time‐dependent. Explicit expressions for the time evolution of the diffusion process (including the probability distribution of the relevant variable, its mean value and variance) are derived in the asymptotic regime N ? 1. The nonlinear character of the model enables us to exploit our asymptotic expressions for studying finite‐size effects as well; the resulting expressions turn out to be reliable for N as low as 10.  相似文献   

13.
We study the probabilistic evolution of a birth and death continuous time measure-valued process with mutations and ecological interactions. The individuals are characterized by (phenotypic) traits that take values in a compact metric space. Each individual can die or generate a new individual. The birth and death rates may depend on the environment through the action of the whole population. The offspring can have the same trait or can mutate to a randomly distributed trait. We assume that the population will be extinct almost surely. Our goal is the study, in this infinite dimensional framework, of the quasi-stationary distributions of the process conditioned on non-extinction. We first show the existence of quasi-stationary distributions. This result is based on an abstract theorem proving the existence of finite eigenmeasures for some positive operators. We then consider a population with constant birth and death rates per individual and prove that there exists a unique quasi-stationary distribution with maximal exponential decay rate. The proof of uniqueness is based on an absolute continuity property with respect to a reference measure.  相似文献   

14.
We are interested in studying the evolution in time of the concentration of a pollutant which is transported by diffusion and convection from a “source site” made of a large number of similar “local sources”. Assuming the release curve (source emission vs. space and time), of each local source, being random, our aim is to give a mathematical model describing the global evolution of such a system and numerical simulations illustrating the theoretical results.  相似文献   

15.
Ambrosio and Kirchheim presented a theory of currents with finite mass in complete metric spaces. We develop a variant of the theory that does not rely on a finite mass condition, closely paralleling the classical Federer–Fleming theory. If the underlying metric space is an open subset of a Euclidean space, we obtain a natural chain monomorphism from general metric currents to general classical currents whose image contains the locally flat chains and which restricts to an isomorphism for locally normal currents. We give a detailed exposition of the slicing theory for locally normal currents with respect to locally Lipschitz maps, including the rectifiable slices theorem, and of the compactness theorem for locally integral currents in locally compact metric spaces, assuming only standard results from analysis and measure theory.  相似文献   

16.
We present a short survey on the biological modeling, dynamics analysis, and numerical simulation of nonlocal spatial effects, induced by time delays, in diffusion models for a single species confined to either a finite or an infinite domain. The nonlocality, a weighted average in space, arises when account is taken of the fact that individuals have been at different points in space at previous times. We discuss and compare two existing approaches to correctly derive the spatial averaging kernels, and we summarize some of the recent developments in both qualitative and numerical analysis of the nonlinear dynamics, including the existence, uniqueness (up to a translation), and stability of traveling wave fronts and periodic spatio-temporal patterns of the model equations in unbounded domains and the linear stability, boundedness, global convergence of solutions and bifurcations of the model equations in finite domains.  相似文献   

17.
We consider an evolution model describing the spatial population distribution of two salt tolerant plant species, such as mangroves, which are affected by inter- and intra-specific competition (Lotka–Volterra), population pressure (cross-diffusion) and environmental heterogeneity (environmental potential). The environmental potential and the Lotka–Volterra terms are assumed to depend on the salt concentration in the root region, which may change as a result of mangroves’ ability to uptake fresh water and leave the salt of the solution behind, in the saturated porous medium. Consequently, partial differential equations modelling the population dynamics on the surface are coupled with Darcy–transport equations modelling the salt and pressure-velocity distribution in the subsurface. We prove the existence of weak solutions of the coupled problem and provide a numerical discretization based on a stabilized mixed finite element method, which we use to numerically demonstrate the behaviour of the system.  相似文献   

18.
This paper studies some new properties of set functions (and, in particular, “non-additive probabilities” or “capacities”) and the Choquet integral with respect to such functions, in the case of a finite domain. We use an isomorphism between non-additive measures on the original space (of states of the world) and additive ones on a larger space (of events), and embed the space of real-valued functions on the former in the corresponding space on the latter. This embedding gives rise to the following results:
  • the Choquet integral with respect to any totally monotone capacity is an average over minima of the integrand;
  • the Choquet integral with respect to any capacity is the difference between minima of regular integrals over sets of additive measures;
  • under fairly general conditions one may define a “Radon-Nikodym derivative” of one capacity with respect to another;
  • the “optimistic” pseudo-Bayesian update of a non-additive measure follows from the Bayesian update of the corresponding additive measure on the larger space.
  • We also discuss the interpretation of these results and the new light they shed on the theory of expected utility maximization with respect to non-additive measures.  相似文献   

    19.
    We study the combined influence of selection and random fluctuations on the evolutionary dynamics of two-strategy (“cooperation” and “defection”) games in populations comprising cooperation facilitators. The latter are individuals that support cooperation by enhancing the reproductive potential of cooperators relative to the fitness of defectors. By computing the fixation probability of a single cooperator in finite and well-mixed populations that include a fixed number of facilitators, and by using mean field analysis, we determine when selection promotes cooperation in the important classes of prisoner’s dilemma, snowdrift and stag-hunt games. In particular, we identify the circumstances under which selection favors the replacement and invasion of defection by cooperation. Our findings, corroborated by stochastic simulations, show that the spread of cooperation can be promoted through various scenarios when the density of facilitators exceeds a critical value whose dependence on the population size and selection strength is analyzed. We also determine under which conditions cooperation is more likely to replace defection than vice versa.  相似文献   

    20.
    In an ordinary list multicoloring of a graph, the vertices are “colored” with subsets of pre‐assigned finite sets (called “lists”) in such a way that adjacent vertices are colored with disjoint sets. Here we consider the analog of such colorings in which the lists are measurable sets from an arbitrary atomless, semifinite measure space, and the color sets are to have prescribed measures rather than prescribed cardinalities. We adapt a proof technique of Bollobás and Varopoulos to prove an analog of one of the major theorems about ordinary list multicolorings, a generalization and extension of Hall's marriage theorem, due to Cropper, Gyárfás, and Lehel. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 179–193, 2007  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号