首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立主动约束层阻尼板有限元模型,以结构模态阻尼比最大化为目标函数,压电层总电能消耗为约束条件,压电层单元控制电压为设计变量,对主动约束层阻尼板压电层电压进行了拓扑优化,获得了压电层电压最优拓扑分布。通过引入虚拟设计变量,将压电层电压控制不连续问题转化为连续问题。考虑实际工程应用的需要,采用指数函数对电压中间变量进行惩罚。在灵敏度分析基础上,采用移动渐进线(MMA)法,求解了主动约束层阻尼板电压拓扑优化问题。数值算例证实了电压拓扑优化模型以及数值求解方法的有效性。  相似文献   

2.
In this work, variation of piezoelectric strain coe?cient and permittivity with change in electric field is included in constitutive equations of piezoelectricity and used for developing finite element model of a plate instrumented with piezoelectric patches. Simulation results show that nodal displacement response and sensor voltage is less controlled if variation of piezoelectric strain coe?cient and permittivity with change in electric field is not included in finite element modelling as compared to the case in which these variations are included in finite element modeling. An experiment is performed so as to validate simulation results.  相似文献   

3.
The dynamic stability of negative-velocity feedback control of piezoelectric composite plates using a finite element model is investigated. Lyapunov’s energy functional based on the derived general governing equations of motion with active damping is used to carry out the stability analysis, where it is shown that the active damping matrix must be positive semi-definite to guarantee the dynamic stability. Through this formulation, it is found that imperfect collocation of piezoelectric sensor/actuator pairs is not sufficient for dynamic stability in general and that ignoring the in-plane displacements of the midplane of the composite plate with imperfectly collocated piezoelectric sensor/actuator pairs may cause significant numerical errors, leading to incorrect stability conclusions. This can be further confirmed by examining the complex eigenvalues of the transformed linear first-order state space equations of motion. To overcome the drawback of finding all the complex eigenvalues for large systems, a stable state feedback law that satisfies the second Lyapunov’s stability criteria strictly is proposed. Numerical results based on a cantilevered piezoelectric composite plate show that the feedback control system with an imperfectly collocated PZT sensor/actuator pair is unstable, but asymptotic stability can be achieved by either bonding the PZT sensor/actuator pair together or changing the ply stacking sequence of the composite substrate to be symmetric. The performance of the proposed stable controller is also demonstrated. The presented stability analysis is of practical importance for effective design of asymptotically stable control systems as well as for choosing an appropriate finite element model to accurately predict the dynamic response of smart piezoelectric composite plates.  相似文献   

4.
压电堆具有体积小、频响快、能耗低以及集传感与驱动于一体等优点。结合二次驱动机械设计原理,开发了适应于结构振动控制的压电套筒式拉压双向受力主动杆件。本文介绍了主动杆件的设计方法及构成部件,并给出了详细的工作原理图,阐述了主动杆件为充分发挥压电堆良好受压性能而将拉力转化为压力的传力途径,并运用Hamilton原理,对主动杆件进行了有限元建模。通过对压电堆的性能测试,得到了压电堆的电压-位移输出关系以及动态性能曲线;通过对压电主动杆件的动力性能测试,得出压电主动杆件适宜于在20Hz~50Hz频段范围内工作;由驱动性能测试,得到了主动杆件的增益函数。本文结论可为进行结构抗振提供设计参考。  相似文献   

5.
基于谱有限元法发展了一种由压电晶片主动传感器(PWAS)、胶层和主结构组成的三层模型,来模拟PWAS激励结构中Lamb波的传播。首先在各层使用不同的梁理论,推导PWAS-胶层-主结构三层模型的控制方程和力的边界条件,建立谱有限元模型。通过和传统的有限单元法进行比较,表明了在显著提高计算效率的同时,所发展谱有限元模型在分析结构中Lamb波传播上仍具有较高的精度。分析了激励频率、PWAS长度与厚度、胶层厚度等参数变化对输出电压信号的影响,可以为基于PWAS和Lamb波的主动健康监测技术提供参考。  相似文献   

6.
基于弹性、粘弹性和压电材料本构方程,应用能量法建立了主动约束层阻尼(ACLD)圆柱壳体的有限元动力学方程。通过对压电传感层自感电压的比例、微分反馈控制,对主动约束层阻尼(ACLD)圆柱壳体进行了主被动一体化振动控制,研究了复合圆柱壳体的动力学响应特性。讨论了主动约束层阻尼(ACLD)片体的位置、覆盖率、粘弹性层厚度及控制增益等关键参数对圆柱壳体振动特性的影响。研究表明:主动约束层阻尼(ACLD)片体的粘贴位置与模态有关,针对不同模态,应采用不同的粘贴位置;覆盖率、粘弹性层厚度及控制增益等直接影响到振幅衰减程度,通过对片体位置、覆盖率、粘弹性层厚度及控制增益等关键参数的优化,能有效降低主动约束层阻尼圆柱壳体的振动,具有十分重要的工程应用价值。  相似文献   

7.
提出一种将整体分析得到的节点力或节点位移直接传递到精细化局部有限元模型的方法,即部分混合单元法。沿精细化局部有限元模型周边建立一组过渡单元,该组过渡单元采用与整体模型一致的单元类型和模拟方式,其外侧边界上的节点与整体模型节点的相对坐标对应,内侧边界与精细化局部有限元模型采用基于面约束的方式连接。在外侧边界上根据节点坐标对应施加整体分析获得的节点力或节点位移,过渡单元就可直接将边界条件传递到精细化局部有限元模型。通过贵州红水河特大桥钢-混结合段的精细化有限元分析,验证了本文方法的实用性和有效性。  相似文献   

8.
Material models are the key ingredients to accurately capture the global mechanical response of structural systems. The use of finite element analysis has proven to be effective in simulating nonlinear engineering applications. However, the choice of the appropriate material model plays a big role in the value of the numerical predictions. Such models are not expected to exactly reproduce global experimental response in all cases. Alternatively, the measured global response at specific domain or surface points can be used to guide the nonlinear analysis to successively extract a representative material model. By selecting an initial set of stress–strain data points, the load–displacement response at the monitoring points is computed in a forward incremental analysis without iterations. This analysis retains the stresses at the integration points. The corresponding strains are not accurate since the computed displacements are not anticipated to match the measured displacements at the monitoring points. Therefore, a corrective incremental displacement analysis is performed at the same load steps to adjust for displacements and strains everywhere by matching the measured displacements at the monitoring points. The stress–strain vectors at the most highly stressed integration point are found to establish an improved material model. This model is used within a multi-pass incremental nonlinear finite element analysis until the discrepancy between the measured and the predicted structural response at the monitoring points vanishes. The J2 flow theory of plasticity is used as a constitutive framework to build the tangent elastic–plastic matrices. The applicability of the proposed approach is demonstrated by solving 2D inverse continuum problems. The comparisons presented support the effectiveness of the proposed approach in accurately calibrating the J2 plasticity material model for such problems.  相似文献   

9.
基于结构力学中的矩阵位移法,提出了一种利用节点位移参数来反推拱肋区段刚度的计算方法。算例验证该方法在只利用部分节点位移参数时依然具有较高的精度。然后考虑不同的加载模式和损伤模式,采用该方法对借助非线性有限元分析技术和试验手段获得的既有钢筋混凝土拱肋加载过程中的节点位移值进行了分析,证实了既有拱肋的区段刚度具有较大幅度的波动变化特性。基于拱肋区段的变化规律,研究了既有拱肋破坏过程中节点竖向刚度值的变化趋势。结果表明,既有拱肋的节点竖向刚度变化规律与区段刚度较为一致。在此研究基础上,提出了一种适用于既有钢筋混凝土拱肋的承载能力评估方法。实例分析表明,该评估方法具有较高的精度。  相似文献   

10.
胡骏  亢战 《力学学报》2019,51(4):1073-1081
压电作动器可以把电能转换成机械能,在结构主动振动控制中具有应用背景. 由于压电作动器的布局对振动控制效果影响很大,因此作动器布局优化一直是结构控制研究的关键之一. 为了提高压电结构控制能量的利用效率,本文提出了以提高结构可控性为目标的压电作动器的拓扑优化方法. 基于经典层合板理论对压电结构进行了有限元建模,并采用模态叠加法将动力控制方程映射到模态空间,推导了基于控制矩阵奇异值的可控性指标. 优化模型中,选取可控性指标指数形式为目标函数,将设计变量定义为作动器单元的相对密度,并基于人工密度惩罚模型构造了压电系数惩罚模型,给出了基于控制矩阵奇异值的可控性指标关于设计变量的灵敏度分析方法. 优化问题采用基于梯度的数学规划法求解. 数值算例验证了灵敏度分析方法和优化模型的有效性,并讨论了主要因素对优化结果的影响.   相似文献   

11.
A modified mixed variational principle for piezoelectric materials is established and the state-vector equation of piezoelectric plates is deduced directly from the principle. Then the exact solution of the state-vector equation is simply given, and based on the semi-analytical solution of the state-vector equation, a realistic mathematical model is proposed for static analysis of a hybrid laminate and dynamic analysis of a clamped aluminum plate with piezoelectric patches. Both the plate and patches are considered as two three-dimensional piezoelectric bodies, but the same linear quadrilateral element is used to discretize the plate and patches. This method accounts for the compatibility of generalized displacements and generalized stresses on the interface between the plate and patches, and the transverse shear deformation and the rotary inertia of the plate and patches are also considered in the global algebraic equation system. Meanwhile, there is no restriction on the thickness of plate and patches. The model can be also modified to achieve a semi-analytical solution for the transient responses to dynamic loadings and the vibration control of laminated plate with piezoelectric patches or piezoelectric stiffeners.  相似文献   

12.
13.
结构健康监测中的损伤检测技术研究进展   总被引:35,自引:0,他引:35  
杨智春  于哲峰 《力学进展》2004,34(2):215-223
对结构健康监测研究中的结构损伤检测方法及其特点进行了介绍.从基于结构模态分析的方法和基于结构动态试验信号处理的方法两方面,阐述了结构健康监测中的损伤检测方法及其最新研究进展.基于结构模态分析的结构损伤检测方法是针对整个结构的检测,使用的模态都限于低阶模态范围内,所检测的结构应容易建立有限元模型,便于进行响应预测.基于结构动态试验信号处理的损伤检测方法通常是针对结构局部构件的损伤检测,不需要对结构进行有限元建模,而直接从测试的动态响应信号中提取表征结构损伤的特征参数.文中提出了对比性损伤检测方法和非对比性损伤检测方法的概念,并对结构损伤检测中常用的信息传感与处理技术进行了论述,指出了结构损伤检测研究中应该考虑的传感器布置问题.提出了将损伤信息的主动检测与被动检测相结合进行损伤程度判断和剩余寿命估计等问题是有待进一步深入研究的课题.   相似文献   

14.
压电层合板结构振动控制的有限元法   总被引:11,自引:0,他引:11  
利用有限元方法模拟压电结构的振动控制,从Hamilton理论出发推导出具有压电传感器及激励器的层合板的电耦合动力方程,应用Lyapunov及负速度反馈控制算来实现振动的控制。  相似文献   

15.
16.
Shape sensing of 3D frame structures using an inverse Finite Element Method   总被引:1,自引:0,他引:1  
A robust and efficient computational method for reconstructing the elastodynamic structural response of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as “shape sensing”, this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving section strains (also known as strain measures) of Timoshenko theory for stretching, torsion, bending, and transverse shear. The present iFEM methodology is based on strain–displacement relations only, without invoking force equilibrium. Consequently, both static and time-varying displacement fields can be reconstructed without the knowledge of material properties, applied loading, or damping characteristics. Two finite elements capable of modeling frame structures are derived using interdependent interpolations, in which interior degrees of freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. Several example problems involving cantilevered beams and three-dimensional frame structures undergoing static and dynamic response are discussed. To simulate experimentally measured strains and to establish reference displacements, high-fidelity MSC/NASTRAN finite element analyses are performed. Furthermore, numerically simulated measurement errors, based on Gaussian distribution, are also considered in order to verify the stability and robustness of the methodology. The iFEM solution accuracy is examined with respect to various levels of discretization and the number of strain gauges.  相似文献   

17.
This paper establishes a piezoelectric constitutive computational approach based on generalized eigenvalue and multivariable finite element solutions with potential applications to accurate and effective analysis of layered piezoelectric microstructures of arbitrary geometries and different anisotropic materials, to ease the limitation of current computer capacity in analyzing large-scale high-frequency disturbed surface acoustic waves (DSAW) by mounted electrodes in piezoelectric devices such as microchip SAW resonators. A new incompatible generalized hybrid/mixed element GQM5 is also proposed for improving predictions of the piezoelectric surface mount thermal stresses that are shear-dominated. The (generalized) plane strain constitutive model is numerically verified for piezoelectric finite element computation. With the help of computational piezoelectricity (electro-mechanics) for general layered structures with metal electrodes and anisotropic piezoelectric substrates, some new interesting, reliable and fundamental constitutive finite element results are obtained for high-frequency piezoelectric and mechanical SAW propagations and can be used for further applications. The ST-cut FEA results agree quite well with available exact and lab solutions for free surface case. The project supported by SRF for ROCS, SEM of China, the past Rutgers Univer-Seiko Epson Joint Fund and Zhejiang Provincial NSF  相似文献   

18.
Summary  The paper presents an efficient two-dimensional approach to piezoelectric plates in the framework of linear theory of piezoelectricity. The approximation of the through-the-thickness variations accounts for the shear effects and a refinement of the electric potential. Using a variational formalism, electromechanically coupled plate equations are obtained for the generalized stress resultants as well as for the generalized electric inductions. The latter are deduced from the conservative electric charge equation, which plays a crucial role in the present model. Emphasis is placed on the boundary conditions at the plate faces. The model is used to examine some problems for cylindrical bending of a single simply supported plate. Number of situations are examined for a piezoelectric plate subject to (i) an applied electric potential, (ii) a surface density of force, and (iii) a surface density of electric charge. The through-thickness distributions of electromechanical quantities (displacements, stresses, electric potential and displacement) are obtained, and compared with results provided by finite element simulations and by a simplified plate model without shear effects. A good agreement is observed between the results coming from the present plate model and finite element computations, which ascertains the effectiveness of the proposed approach to piezoelectric plates. Received 17 July 2000; accepted for publication 26 September 2000  相似文献   

19.
Based on the Hellinger-Reissner (H-R) mixed variational principle for piezoelectric material, a unified 4-node Hamiltonian isoparametric element of anisotropy piezoelectric material is established. A new semi-analytical solution for the natural vibration of smart laminated plates and the transient response of the laminated cantilever with piezoelectric patch is presented. The major steps of mathematical model are as follows: the piezoelectric layer and host layer of laminated plate are considered as unattached three-dimensional bodies and discretized by the Hamiltonian isoparametric elements. The control equation of whole structure is derived by considering the compatibility of generalized displacements and generalized stresses on the interface between layers. There is no restriction for the side-face geometrical boundaries, the thickness and the number of layers of plate by the use of the present isoparametric element. Present method has wide application area.  相似文献   

20.
基于局部插值的结构动力模型降阶方法   总被引:2,自引:0,他引:2  
邓佳东  程耿东 《力学学报》2012,44(2):342-350
提出了一种基于局部插值对大型结构有限元模型的特征值问题进行降阶的方法. 该方法通过局部插值将复杂结构的有限元模型中节点的位移用凝聚点的位移插值来表示, 从而得到用插值函数表示的简化基向量, 实现对结构广义特征值问题的降阶. 为了提高降阶模型的精度, 采用非协调元的插值函数作为局部插值函数来弱化凝聚后的结构刚度, 并且在有限元模型上进行逆迭代, 对得到的降阶后的广义特征值问题的特征值和特征向量进行改善. 为了提高模型降阶的效率, 采用规整网格包围整个结构生成均匀的凝聚点, 高效地确定了有限元模型中节点所依附的凝聚点. 最后, 对 3 个机床部件的模态分析验证了提出的简化方法的高效性和可行性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号