首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results on the isotope effect for total and ionic desorption cross sections in the electron impact desorption of various binding states of CO on the (110) plane of tungsten, and of oxygen on this plane are presented and discussed. It is shown that the observations allow a dissection of cross sections into excitation cross sections and escape probabilities, and that the latter can be used to estimate lifetimes of excited or ionic states. It is found that excitation cross sections for total desorption are of the order of 10−16–10−17 cm2, but seem to be significantly smaller in some cases for excitation to ionic states, suggesting that different excitations are involved. In all cases examined here the isotope effect for total desorption is much smaller than for ion production. This can be explained by the fact that ion lifetimes are somewhat shorter than those of excited neutrals. Lifetimes are estimated, in the cases examined, to be of the order of 10−14s.  相似文献   

2.
The adsorption of CO on the (110) plane of tungsten has been studied using electron impact desorption, thermal desorption, and work function measurements in a single apparatus combining these various techniques. It is concluded that a single molecular adsorption state exists at 20–250 K (virgin-CO). At 300–400 K, 60% of the low temperature layer desorbs, the remainder converting principally to a beta-1 state, which has very small electron impact cross section; in addition to beta-1 an O+ yielding state, which we call beta-precursor is formed. The beta-1 state is stable to 900 K, where some desorption and conversion of the remaineder to a beta-2 state occurs. The O+ yielding state decays with increasing T and is gone at 800 K. Readsorption on beta-1 leads to two types of adsorption states called alpha and gamma, which seem to be site specific. Electron impact desorption yields mostly CO+ and CO for virgin, O+ for beta-precursor, and CO+ and CO for the readsorption states. There is no isotopic mixing in virgin or in readsorbed CO, nor does readsorbed CO exchange with beta-1 or beta precursor. There is complete isotopic mixing in beta desorption. In addition, massive EID creates another state, characterized by a large dipole moment, also yielding O+ in EID. This state can be converted to beta-1 by heating to 400 K. The total disappearance cross sections for the various states are virgin-CO5 × 10?17cm2; γ-CO 1.6 × 10?16cm2; α-CO 5 × 10?17cm2; β-precursor 6 × 10?18cm2and 1.2 × 10?19cm2; EID induced state 8 × 10?18cm2. In addition, cross sections for ion production are determined and found to be several orders of magnitude less than total disappearance cross sections. These results, and Leed and coverage data obtained in parallel investigations are used to formulate models of the various adsorption states. It is concluded that virgin and readsorbed CO are molecular and beta-precursor and beta dissociated, although strong interactions between C and O remain. The electron impact desorption of physisorbed CO was investigated and found to yield C+, O+, and neutral CO, but very little CO+. These results suggest primary dissociation of CO by electron impact, and desorption of neutral physisorbed CO by the energetic fragments. Physisorbed CO+, although undoubtedly created, lies on the attractive part of its potential curve relative to the surface, and thus does not desorb as CO+.  相似文献   

3.
Q.J. Zhang  R. Gomer 《Surface science》1981,109(3):567-573
The electron stimulated desorption of Xe adsorbed on the clean and on oxygen and CO covered tungsten (110) surfaces has been investigated. Only neutral Xe desorption was observed; for Xe on clean W a very small initial regime with cross section 10?17cm2 is followed by a slow decay with cross section 3×10?19cm2. The Xe yield varies nonlinearly with coverage, suggesting desorption from edges of islands or from sites with less than their full complement of nearest neighbor Xe atoms. Desorption from oxygen or CO covered surfaces results in an apparent desorption cross section identical to that of the underlying adsorbate. This results from a kicking off of Xe by electron desorbed O or CO. The true cross sections for these processes are ~10?14cm2 for Xe-0 and ~10?15 cm2 for Xe-CO. Some speculations about the mechanism, particularly the absence of ions are presented.  相似文献   

4.
When a layer of oxygen on the (110) plane of tungsten at coverages O/W≦0.5 is heated from 100 K, O+ evolution under electron impact becomes almost negligible at 600 K. On further heating, however, a slow, temperature-dependent evolution of O+ current is observed atT≳1500 K. For O/W>0.3 there is also desorption under massive bombardment. Once an equilibrium value of O+ current has been established, there is rapid adjustment to the appropriate equilibrium value when the temperature changes in the range 1500–1700 K. On cooling toT<1000 K, O+ decreases rapidly; on reheating toT>1500 K, O+ increases slowly again. Above 1700 K there is thermal desorption which is also reflected in the O+ signal. These facts indicate that there is a slow activated evolution of an electron sensitive state above 1500 K, from a reconstructed state formed by heating the low temperature layer toT≧1000 K. The latter state seems to be reformed on cooling below 1500 K.  相似文献   

5.
C. Wang  R. Gomer 《Surface science》1978,74(2):389-404
An effusion source, calibrated with a vibrating quartz microbalance, has been used to determine absolute coverages of CO and of oxygen adsorbed on a tungsten (110) plane by an extension of the field emitter detector method: The amount of gas reflected from the substrate is measured as a function of the absolute amount impinged per unit area; maximum coverage in the chemisorbed layer can be obtained very directly from this information. Work function increments vs. absolute coverages were measured in the same apparatus by the vibrating condenser method. Results were as follows: For virgin CO, adsorbed at 100 K, the maximum coverage obtained was CO/W = 0.71 ; this leads to a maximum coverage for beta or beta-precursor CO of CO/W = 0.28. The maximum work function increment for virgin CO was 0.8 eV. For oxygen, adsorption at 100 or 300 K a decrease in sticking coefficient by several orders of magnitude occurs when the coverage is O/W = 0.5. Adsorption at 20 K leads to the molecular precursor noted by Leung and Gomer, which converts to atomic oxygen at <50 K. By adsorbing at 20 K the O atom coverage can be increased to O/W = 0.62. Work function versus coverage data for this system are also presented.  相似文献   

6.
The chemisorption of CO on W(100) at ~ 100K has been studied using a combination of flash desorption and electron stimulated desorption (ESD) techniques. This is an extension of a similar study made for CO adsorption on W(100) at temperatures in the range 200–300K. As in the 200–300 K CO layer, both α1-CO and α2-CO are formed in addition to more strongly bound CO species upon adsorption at ~ 100K; the α-CO states yield CO+ and O+ respectively upon ESD. At low CO coverages, the α1 and α2-CO states are postulated to convert to β-CO or other strongly bound CO species upon heating. At higher CO coverages, α1-CO converts to α2-CO upon thermal desorption or electron stimulated desorption. There is evidence for the presence of other weakly-bound states in the low temperature CO layer having low surface concentration at saturation. The ESD behavior of the CO layer coadsorbed with hydrogen on W(100) is reported, and it is found that H(ads) suppresses either the concentration or the ionic cross section for α1 and α2-CO states.  相似文献   

7.
R. Opila  R. Gomer 《Surface science》1983,127(3):569-597
The UPS and XPS spectra of Xe adsorbed on clean, O, CO, and Xe covered W(110) surfaces and the UPS spectrum for Kr on clean and O covered W(110) surfaces have been investigated. On clean W, Xe and Kr show a splitting of the 5p32 and 4p32 hole states respectively. For Xe the coverage dependence of this splitting was investigated in detail; neither the positions nor the intensity ratio of the substates are coverage dependent for θ ? 0.04, suggesting that splitting is due to differences in the image interaction of the mj = ±32 and mj = ±12 components. For Xe equal shifts, relative to vacuum, of ~1.0 eV were observed for 5p, 4d, and 3d levels, suggesting that initial state effects are small. Image interaction for Xe and Kr on clean W could best be fitted by assuming an increase, rather than a decrease in the effective hole-image separation from the nominal value, suggesting that the image plane is moved back into the metal by a screening length. For Xe adsorbed on XeW(110), or on virgin-COW(110) polarization of the intermediate layers was found to contribute significantly to relaxation. Coadsorbed oxygen broadened Xe 5p and Kr 4p peaks. There was an almost linear relation between O 2p UPS intensity at the energies of the various peaks and the amounts of broadening, suggesting that the latter results from resonance neutralization by electrons from the O 2p states.  相似文献   

8.
《Surface science》1988,202(3):L555-L558
The absolute surface coverages of CO and O on Pd(110) have been measured by nuclear reaction analysis (NRA) using the 12C(d, p)13C and 16O(d, p1)17O1 reactions. The CO coverages of the (2 × 1) and (4 × 2) phases of CO on Pd(110) are 1.00 ±0.05 and 0.73 ±0.05 ML (1 ML = 1 monolayer = 9.4 × 1014 CO molecules cm−2) respectively. The oxygen coverage in the c(4 × 2) phase of O on Pd(110) is 0.50 ±0.05 ML.  相似文献   

9.
R. Morin 《Surface science》1985,155(1):187-202
The surface diffusion parameters and the compressibility of sodium on the (110) plane of tungsten have been measured using the field emission fluctuation method for sodium coverages from 0.2 to 3 × 1014 atoms cm?2 and for temperatures from 170 to 500 K. Two temperature regimes can be defined. In the high temperature regime (? 300 K) the diffusion is essentially normal with an activation energy ranging from 0.28 to 0.58 eV and a preexponential coefficient D0 from 10?8.1 to 10?2.7 cm2 s?1. In this regime the compressibility increases with temperature indicating an effective repulsive adatoms interaction. In the low temperature regime (? 300 K) the diffusion coefficient decreases with temperature at high coverage and slowly increases with temperature at lower coverage. The transition between both regimes appears on the compressibility versus temperature curve as an inflection point. The comparison of the present results with slow electron diffraction results furnishes strong evidence that the observed transition corresponds to a continuous short-range order-disorder transition.  相似文献   

10.
The measurement of time autocorrelation functions of field emission current fluctuations has been applied to the adsorption of CO on the (110) plane of tungsten. For molecularly adsorbed virgin-CO, no evidence for diffusion was found at any coverage, although a weak, exponentially decaying correlation function, suggesting flip-flop between differing ad-sites, was seen. A hysteresis in the mean square fluctuation could be clearly identified with conversion to β-CO. For the latter state a flip-flop signal was seen for 280 ? T ? 650 K, and for T$?650 K a correlation function corresponding to diffusion was found. The activation energy of diffusion was 23 kcal, independent of coverage. This value agrees closely with that found for oxygen diffusion at OW = 0.5. For CO readsorbed on a β-layer (α-CO) neither diffusion nor flip-flop was seen.  相似文献   

11.
Electron stimulated desorption (ESD) experiments using a time-of-flight pulse counting method are reported for molecular CO chemisorbed on the Cr(110) surface at 90 K. Consistent with previous qualitative observations, negligible CO+ and O+ desorption signals were measured from the 1CO overlayer which saturates at 1/4 monolayer. For θCO > 0.25, a terminally-bonded (2CO) binding mode is populated in addition to the existing ∝1CO binding mode and the ion yield increases sharply. For 2CO, both O+ and CO+ ions are observed; the CO+ ions desorb with characteristically lower kinetic energies than O+ ions. Near saturation coverages of CO(ads), an observed decrease in the O+ yield is attributed to adsorbate-adsorbate interactions which reduce the ion desorption probability, as seen in ESD studies of terminally-bonded CO on other metals. These results are considered in the context of two possible models proposed for the 1CO binding state and related ESD observations for CO chemisorbed on Fe(001) and potassium-promoted Ru(001).  相似文献   

12.
Adsorption of CO on W(110) at 100 K produces a number of ordered LEED patterns as coverage increases, culminating in a p(5 × 1) pattern for a full virgin CO layer. The beta-1 layer obtained by heating a virgin layer to 400 K has a p(2 × 1) structure. Absolute coverages, obtained by comparison of XPS intensities (and Auger intensities where feasible) with those of oxygen on tungsten at O/W = 0.5 indicate that CO/W ? 0.8 for the full virgin layer and ? 0.3 for beta-1. These results, together with the LEED data, indicate that low temperature adsorption of virgin CO is not very site specific, and that beta-1 must be dissociated with C and O lying along alternate closepacked rows of W. XPS results for the oxygen 1s peak show that the latter shifts in beta and beta-1 from its position in virgin CO to an energy equal to that seen for pure oxygen on tungsten. A number of electron impact desorption results are also presented, and the nature of the various binding states of CO on this plane is discussed.  相似文献   

13.
Field emission for the (110) plane of field evaporated and thermally annealed tungsten has been restudied with particular reference to the significance of interpretation of the work function. It is concluded that the results obtained in field emission are consistent with results from non-field emission methods where the important variable of the local field is adequately considered. Possible contribution of other factors to measurement of the clean surface work function is also discussed.  相似文献   

14.
《Surface science》1988,195(3):L193-L198
The thermal desorption of CO from the CdTe(110) surface was studied. The initial rate of desorption exhibits zero order kinetics with an activation energy of 2.8 kval/mol at low surface coverage rising to 4.4 kcal/mol at high surface coverage. The results may be explained in terms of the mechanism of island formation on the semiconductor surface.  相似文献   

15.
16.
Isotope labelling experiments have established that the adsorption of O2 on the W(110) plane at 20 K leads first to the formation of a dissociated atomic layer. A weakly bound molecular species, α-O2, forms only when the atomic layer is essentially complete (O/W = 0.6). The desorption of α-O2 was found to be first order with an activation energy of E = 1.9 kcalmole and a frequency factor γ = 3 × 109 s?1. The activation energy is shown to be less than the enthalpy of desorption and the meaning of this result is discussed.  相似文献   

17.
18.
Absolute coverages and sticking coefficients as functions of both gas and surface temperatures are presented for CO adsorption on the (110) plane of tungsten. For a low temperature layer the CO/W ratio at saturation is 1.1, while that for alpha or beta adsorption is 0.5, indicating some crowding in the low temperature phase at high coverage. Initial sticking coefficients drop with increasing gas or surface temperature but eventually level off at ~ 0.5. Qualitative reasons for this behavior are given.  相似文献   

19.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

20.
《Surface science》1987,179(1):59-89
Molecular adsorption is observed on a Ni(110) surface at 80 K. The relative binding energies of the valence ion states as determined by ARUPS are consistent with those in the gas as well as in the condensed phase, and indicate that the electronic structure of the adsorbed molecule is only slightly distorted upon adsorption at this temperature. The adsorbate spectra show E versus k dispersions indicating some long-range order in the adsorbate. The variations in relative ionisation probabilities of the ion states as a function of electron emission angle suggest that the molecular axis is oriented parallel to the surface within ± 20°. Upon heating the adsorbate to above 100 K. (i.e. 140 K) the spectrum changes. A new species causing an increase in work function by 1 eV can be identified. Comparison with calculations suggests that it is an anionic bent CO; molecule. Electron energy loss studies on this intermediate species support the proposed bent CO2 geometry and favour a coordination site with C2v symmetry. The bent CO2 moiety is stable up to 230 K. Further heating to room temperature leads to dissociation of the bent CO2 molecule into adsorbed CO and O. The CO molecule is oriented with its axis perpendicular to the surface. The bent CO2 species appears to be a precursor to dissociation. Results on CO2 adsorption on an oxygen precovered surface show that CO2 interacts with oxygen at 85 K. Upon heating the co-adsorbate to near room temperature a reaction product is formed the nature of which cannot yet be clearly identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号