首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

2.
Using algebraic methods, we find the three-loop relation between the bare and physical couplings of one-flavourD-dimensional QED, in terms of Γ functions and a singleF 32 series, whose expansion nearD=4 is obtained, by wreath-product transformations, to the order required for five-loop calculations. Taking the limitD→4, we find that the \(\overline {MS} \) coupling \(\bar \alpha (\mu )\) satisfies the boundary condition $$\begin{gathered} \frac{{\bar \alpha (m)}}{\pi } = \frac{\alpha }{\pi } + \frac{{15}}{{16}}\frac{{\alpha ^3 }}{{\pi ^3 }} + \left\{ {\frac{{11}}{{96}}\zeta (3) - \frac{1}{3}\pi ^2 \log 2} \right. \hfill \\ \left. { + \frac{{23}}{{72}}\pi ^2 - \frac{{4867}}{{5184}}} \right\}\frac{{\alpha ^4 }}{{\pi ^4 }} + \mathcal{O}(\alpha ^5 ), \hfill \\ \end{gathered} $$ wherem is the physical lepton mass and α is the physical fine structure constant. Combining this new result for the finite part of three-loop on-shell charge renormalization with the recently revised four-loop term in the \(\overline {MS} \) β-function, we obtain $$\begin{gathered} \Lambda _{QED}^{\overline {MS} } \approx \frac{{me^{3\pi /2\alpha } }}{{(3\pi /\alpha )^{9/8} }}\left( {1 - \frac{{175}}{{64}}\frac{\alpha }{\pi } + \left\{ { - \frac{{63}}{{64}}\zeta (3)} \right.} \right. \hfill \\ \left. { + \frac{1}{2}\pi ^2 \log 2 - \frac{{23}}{{48}}\pi ^2 + \frac{{492473}}{{73728}}} \right\}\left. {\frac{{\alpha ^2 }}{{\pi ^2 }}} \right), \hfill \\ \end{gathered} $$ at the four-loop level of one-flavour QED.  相似文献   

3.
The incompressible limit in nonlinear elasticity is shown to fall under the theory of singular limits of quasilinear symmetric hyperbolic systems developed by Klainerman and Majda. Specifically, initial-value problems for a family of hyperelastic materials with stored energy functions $$W\left( {\frac{{\partial x}}{{\partial X}}} \right) = W_\infty \left( {\frac{{\partial x}}{{\partial X}}} \right) + \lambda ^2 w\left( {\det \frac{{\partial x}}{{\partial X}}} \right)$$ are considered, whereX andx are reference and deformed coordinates respectively. Under the assumption that the elasticity tensor $$A_{kl}^{ij} \equiv \frac{{\partial ^2 W_\infty }}{{\partial \left( {\frac{{\partial x^i }}{{\partial X^k }}} \right)\partial \left( {\frac{{\partial x^j }}{{\partial X^l }}} \right)}}$$ is positive definite near the identity matrix and thatw″(1)>0, the following results are proven for appropriate initial data: i) existence of solutions of the corresponding evolution equations on a time interval independent of λ as λ→∞, and ii) convergence as λ → ∞ of the solutions to a solution of the incompressible elastodynamics equations.  相似文献   

4.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

5.
The weak and electromagnetic corrections to deep inelastic neutrino scattering experiments are calculated. The results are used to determineθ w from the ratios $$R_v = \frac{{\sigma _{nc} }}{{\sigma _{cc} }} and D_ - = \frac{{\sigma _{nc} - \bar \sigma _{nc} }}{{\sigma _{cc} - \bar \sigma _{nc} }}$$ It is found that the effect of the weak corrections is less than 1% and that electromagnetic corrections decrease the angle by about 3%.  相似文献   

6.
We prove that the solution to a pair of nonlinear integral equations arising in the thermodynamic Bethe Ansatz can be expressed in terms of the resolvent kernel of the linear integral operator with kernel $$\frac{{e^{ - (u(\theta ) + u(\theta \prime ))} }}{{\cosh ^{\frac{{\theta - \theta \prime }}{2}} }}$$ .  相似文献   

7.
The Boltzmann equation for electrons in a semiconductor is assumed to be of the form $$\frac{{\partial f}}{{\partial t}} + F \cdot \frac{{\partial f}}{{\partial k}} = \frac{{h - f}}{{\tau _0 }} + \frac{1}{{\tau \left( k \right)}} \cdot \frac{1}{{4\pi }}\int {d\Omega 'w\left( \theta \right)\left( {f\left( {k,\vartheta '} \right) - f\left( {k,\vartheta '} \right)} \right)} $$ whereh is the Maxwell-Boltzmann distribution. The energy surface structure of the lattice electronsE(k) is assumed to be spheric. The stationary solutions for strong electric fields show a concentration of electrons into the field direction (field orientation), if the elastic collision frequency is not too large. This means, at least for large energies, that nearly all electrons are in a cone with small aperture around the field direction. Every transport problem whose collision operator can be reduced to the upper form at least for large energies, can be solved by a perturbation method whose zeroth order is the ideal field orientation. The conditions for a field orientation of the electron distribution to exist will be investigated.  相似文献   

8.
The effect of collisions on transverse waves in a homogeneous, field free plasma is investigated by means of Gross-Krook collision model. The dispersion relation is calculated by assuming the collision frequency to be small andKλ D ?1. The damping rate ω I is obtained as $$\omega _I = \frac{{\nu _{ei} }}{2}\frac{{\omega _p^2 }}{{\omega _0^2 }}\left[ {1 + \frac{{3K^2 \lambda _D^2 \omega _p^2 }}{{\omega _0^2 }} - \frac{{K^2 \lambda _D^2 \omega _p^4 }}{{\omega _0^4 }}} \right] + \frac{{\nu _{ee} }}{2}\frac{{\omega _p^2 }}{{\omega _0^2 }}\left( {\frac{{K^2 \lambda _D^2 \omega _p^2 }}{{\omega _0^2 }}} \right)$$ where ω 0 2 =c 2 K 2 2 p , andv ei andv ee are electron-ion and electron-electron collision frequency respectively.  相似文献   

9.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

10.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

11.
Previous works have been made on the improvement of selectivity of ion exchange membranes using adsorption of polyelectrolyte on the surface of the materials. The modification of the surface material in the case of an anion exchange membrane concerns the hydrophilic/hydrophobic balance properties and its relationship with the hydration state. Starting from this goal, the AMX membrane has been modified, in this work, by adsorption of polyethyleneimine on its surface. Many conditions of modification of the AMX membrane surface were studied. A factorial experimental design was used for determining the influent parameters on the AMX membrane modification. The results obtained have shown that the initial concentration of polyethyleneimine and the pH of solution were the main influent parameters on the adsorption of polyethyleneimine on the membrane surface. Competitive ion exchange reactions were studied for the modified and the unmodified membrane involving $ {\text{C}}{{\text{l}}^{ - }} $ , $ {\text{NO}}_3^{ - } $ and $ {\text{SO}}_4^{{2 - }} $ ions. All experiments were carried out at constant concentration of 0.3?mol?L?1 and at 25?°C. Ion exchange isotherms for the binary systems $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{NO}}_3^{ - }} \right) $ , $ \left( {{\text{C}}{{\text{l}}^{ - }}/{\text{SO}}_4^{{2 - }}} \right) $ and $ \left( {{\text{NO}}_3^{ - }/{\text{SO}}_4^{{2 - }}} \right) $ were studied. The obtained results show that chloride was the most sorbed and the selectivity order both for the modified membrane and the unmodified one is: $ {\text{Cl}} > {\text{NO}}_3^{ - } > {\text{SO}}_4^{{2 - }} $ , under the experimental conditions. Selectivity coefficients $ {\text{K}}_{{{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{NO}}_3^{ - }}} $ , $ {\text{K}}_{{2{\text{C}}{{\text{l}}^{ - }}}}^{{{\text{SO}}_4^{{2 - }}}} $ and $ {\text{K}}_{{2{\text{NO}}_3^{ - }}}^{{{\text{SO}}_4^{{2 - }}}} $ for the three binary systems and for the two membranes were determined. It was also observed that for the modified membrane the selectivity towards sulfate ion decrease and the modified membrane became more selective towards monovalent anions.  相似文献   

12.
It is supposed that the effective Lagrangian of interaction of a magnetic field with a neutrino can be written in the form $$L_{eff} = \frac{{G_{\mathbf{\gamma }} }}{{m_W^2 }} \frac{{\partial ^2 A^\mu }}{{\partial x^v \partial x_v }}[\bar \Psi _v {\mathbf{\gamma }}_\mu (1 + {\mathbf{\gamma }}^5 )\Psi _v ].$$ Formulas are obtained for the emission of neutrinos by alternating fields. In particular, neutrino synchrotron emission and neutrino emission in the case of collision of two classical charges are considered. Arguments are presented that this mechanism can make a contribution to the neutrino luminosity of stars.  相似文献   

13.
On the basis of the analysis of the adele group (Tate's formula), a regularization for the divergent infinite product ofp-adic Г-functions $$\Gamma _p (\alpha ) = \frac{{1 - p^{\alpha - 1} }}{{[ - p^{ - \alpha } }}$$ is proposed, and the adelic formula is proved $$reg\coprod\limits_{p = 2}^\infty {\Gamma _p (\alpha )} = \frac{{\zeta (\alpha )}}{{\zeta (1 - \alpha )}}$$ whereζ(α) is the Riemannζ-function.  相似文献   

14.
In the present paper, we study the following scaled nonlinear Schrödinger equation (NLS) in one space dimension: $$ i\frac{\rm d}{{\rm d}t}\psi^{\varepsilon}(t)=-\Delta\psi^{\varepsilon}(t) +\frac{1}{\varepsilon}V\left(\frac{x}{\varepsilon} \right)|\psi^{\varepsilon}(t)|^{2\mu}\psi^{\varepsilon}(t)\quad \varepsilon > 0\,\quad V\in L^1(\mathbb{R},(1+|x|){\rm d}x) \cap L^\infty(\mathbb{R}).$$ This equation represents a nonlinear Schrödinger equation with a spatially concentrated nonlinearity. We show that in the limit \({\varepsilon\to 0}\) the weak (integral) dynamics converges in \({H^1(\mathbb{R})}\) to the weak dynamics of the NLS with point-concentrated nonlinearity: $$ i\frac{{\rm d}}{{\rm d}t} \psi(t) =H_{\alpha} \psi(t) .$$ where H α is the Laplacian with the nonlinear boundary condition at the origin \({\psi'(t,0+)-\psi'(t,0-)=\alpha|\psi(t,0)|^{2\mu}\psi(t,0)}\) and \({\alpha=\int_{\mathbb{R}}V{\rm d}x}\) . The convergence occurs for every \({\mu\in \mathbb{R}^+}\) if V ≥  0 and for every  \({\mu\in (0,1)}\) otherwise. The same result holds true for a nonlinearity with an arbitrary number N of concentration points.  相似文献   

15.
The perturbation method of Lindstedt is applied to study the non linear effect of a nonlinear equation $$\nabla ^2 {\rm E} - \frac{1}{{c^2 }}\frac{{\partial ^2 {\rm E}}}{{\partial t^2 }} - \frac{{\omega _0^2 }}{{c^2 }}{\rm E} + \frac{{2v}}{{c^2 }}\frac{{\partial {\rm E}}}{{\partial t}} + E^2 \left[ {\frac{{\partial {\rm E}}}{{\partial t}} \times A} \right] = 0,$$ where (A. E)=0 andA,c, ω 0 andν are constants in space and time. Amplitude dependent frequency shifts and the solution up to third order are derived.  相似文献   

16.
In this paper, the purpose of which is to complement a preceding work [1], it is shown, in agreement with the theory of relativistic deformable solids developed by A.C. Bringen and his coworkers, that the simplest conceivable dissipative constitutive equation — that of a socalled KelvinVoigt viscoelastic solid — yields a gravitational wave equation of propagation different from that of Weber: specifically, the following third order partial differential equation, $$\frac{{\partial ^2 \theta }}{{\partial t^2 }} - \left( {A + A'\frac{{\partial ^2 \theta }}{{\partial t}}} \right)\frac{{\partial ^2 \theta }}{{\partial x^2 }} = c^2 R_{1441'} $$ which can be solved by use of Fourier transform techniques, and where A and A′ are positive material coefficients.  相似文献   

17.
This paper is concerned with the Lévy, or stable distribution function defined by the Fourier transform $$Q_\alpha \left( z \right) = \frac{1}{{2\pi }}\int {_{ - \infty }^\infty \exp \left( { - izu - \left| u \right|^\alpha } \right)du} with 0< \alpha \leqslant 2$$ Whenα=2 it becomes the Gauss distribution function and whenα=1, the Cauchy distribution. Whenα≠2 the distribution has a long inverse power tail $$Q_\alpha \left( z \right) \sim \frac{{\Gamma \left( {1 + \alpha } \right)\sin \tfrac{1}{2}\pi \alpha }}{{\pi \left| z \right|^{1 + \alpha } }}$$ In the regime of smallα, ifα¦logz¦?1, the distribution is mimicked by a log normal distribution. We have derived rapidly converging algorithms for the numerical calculation ofQ α (z) for variousα in the range 0<α<1. The functionQ α (z) appears naturally in the Williams-Watts model of dielectric relaxation. In that model one expresses the normalized dielectric parameter as $$ \in _n \left( \omega \right) \equiv \in '_n \left( \omega \right) - i \in ''_n \left( \omega \right) = - \int {_0^\infty e^{ - i\omega t} \left[ {{{d\phi \left( t \right)} \mathord{\left/ {\vphantom {{d\phi \left( t \right)} {dt}}} \right. \kern-\nulldelimiterspace} {dt}}} \right]} dt$$ with $$\phi \left( t \right) = \exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha $$ It has been found empirically by various authors that observed dielectric parameters of a wide variety of materials of a broad range of frequencies are fitted remarkably accurately by using this form ofφ(t).ε n (ω) is shown to be directly related toQ α (z). It is also shown that if the Williams-Watts exponential is expressed as a weighted average of exponential relaxation functions $$\exp - \left( {{t \mathord{\left/ {\vphantom {t \tau }} \right. \kern-\nulldelimiterspace} \tau }} \right)^\alpha = \int {_0^\infty } g\left( {\lambda , \alpha } \right)e^{ - \lambda t} dt$$ the weight functiong(λ, α) is expressible as a stable distribution. Some suggestions are made about physical models that might lead to the Williams-Watts form ofφ(t).  相似文献   

18.
In this paper we want to give a new definition of fractal dimensions as small scale behavior of theq-energy of wavelet transforms. This is a generalization of previous multi-fractal approaches. With this particular definition we will show that the 2-dimension (=correlation dimension) of the spectral measure determines the long time behavior of the time evolution generated by a bounded self-adjoint operator acting in some Hilbert space ?. It will be proved that for φ, ψ∈? we have $$\mathop {\lim \inf }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ + (2)$$ and that $$\mathop {\lim \sup }\limits_{T \to \infty } \frac{{\log \int_0^T {d\omega \left| {\left\langle {\psi \left| {e^{ - iA\omega } } \right.\phi } \right\rangle } \right|^2 } }}{{\log T}} = - \kappa ^ - (2),$$ wherek ±(2) are the upper and lower correlation dimensions of the spectral measure associated with ψ and ?. A quantitative version of the RAGE theorem shall also be given.  相似文献   

19.
We calculate, exactly, the next-to-leading correction to the relation between the \(\overline {MS} \) quark mass, \(\bar m\) , and the scheme-independent pole mass,M, and obtain $$\begin{gathered} \frac{M}{{\bar m(M)}} \approx 1 + \frac{4}{3}\frac{{\bar \alpha _s (M)}}{\pi } + \left[ {16.11 - 1.04\sum\limits_{i = 1}^{N_F - 1} {(1 - M_i /M)} } \right] \hfill \\ \cdot \left( {\frac{{\bar \alpha _s (M)}}{\pi }} \right)^2 + 0(\bar \alpha _s^3 (M)), \hfill \\ \end{gathered} $$ as an accurate approximation forN F?1 light quarks of massesM i <M. Combining this new result with known three-loop results for \(\overline {MS} \) coupling constant and mass renormalization, we relate the pole mass to the \(\overline {MS} \) mass, \(\bar m\) (μ), renormalized at arbitrary μ. The dominant next-to-leading correction comes from the finite part of on-shell two-loop mass renormalization, evaluated using integration by parts and checked by gauge invariance and infrared finiteness. Numerical results are given for charm and bottom \(\overline {MS} \) masses at μ=1 GeV. The next-to-leading corrections are comparable to the leading corrections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号