首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermal isomerization of the title compounds was studied in the vapor phase. Over the temperature range from 445.1 to 477.5°K, 1,4-dimethylbicyclo[2.2.0]hexane underwent a homogeneous unimolecular reaction to 2,5-dimethyl-1,5-hexadiene, the rate constants being represented by the equation: k = 1.86 × 1011 exp (?31000 ± 1800/RT) sec?1. Over the temperature range from 630.0 to 662.2°K, 1,4-dimethylbicyclo[2.1.1]-hexane also underwent a unimolecular isomerization to the same product, the rate constants being given by the equation: k = 8.91 × 1014 exp (?56000 ± 900/RT) sec?1. The pyrolysis of 1,4-dimethylbicyclo[2.1.0]pentane gave 1,3-dimethylcyclopentene-1 and 2,4-dimethyl-1,4-pentadiene in the ratio of 9:1. The former reaction was influenced by surface effects but the latter was not. The rate constants for the formation of 2,4-dimethyl-1,4-pentadiene fitted the equation: k = 1.66 × 1017 exp (?57400 ± 3100/RT) sec?1. The effect of the two methyl groups at the bridgehead positions in these molecules in influencing the rate of decomposition is discussed in terms of the non-bonded repulsive forces between the substituents.  相似文献   

2.
1, 4-Dicyanobicyclo[2.2.0]hexane ( 2 ) was prepared by (2+2)-photocycloaddition of ethylene to 1, 2-dicyanocyclobutene. 2 isomerizes cleanly to 2, 5-dicyanohexadiene-1, 5 ( 3 ) with a very low activation energy of 21.7 ± 1.4 kcal/mol. From comparison with the reported rates of isomerization of bicyclo[2.2.0]hexane, the radical stabilization energy of the cyano group is shown to be about 7.3 kcal/mol.  相似文献   

3.
Thermolysis of the “all-cis” compound 1α-chloro-2α,3α-dimethylcyclopropane (A) at 550–607 K and 6–115 torr is a first-order homogeneous non-radical-chain process giving penta-1,3-diene (PD) and HCl as products. The Arrhenius parameters are log10A(sec?1) = 13.92 ± 0.08 and E = 199.6 ± 0.9 kJ/mol. The isomer with trans-methyl groups, 1α-chloro-2α,3β-dimethylcyclopropane (B) reacts by two parallel first-order processes giving as observed products trans-4-chloropent-2-ene (4CP) and PD + HCl, with log10A(sec?1) = 14.6 and 13.8, respectively, and E = 199.5 and 190.2 kJ/mol, respectively. The 4CP undergoes secondary decomposition to PD + HCl (as investigated previously). Comparison of the results for compounds (A) and (B) with those for other gas-phase and solution reactions leads to the conclusion that the gas-phase thermolyses proceed by rate-determining ring opening to form olefins which may decompose further by thermal or chemically activated reactions, and that the ring opening is a semiionic electrocyclic reaction in which alkyl groups in the 2,3-positions trans to the migrating chlorine semianion move apart, with appropriate consequences for the rate of reaction and the stereochemistry of the products.  相似文献   

4.
5.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

6.
7.
Vapor phase pyrolysis of 2,4-pentadienaldehyde, of 6-oxabicyclo[3.1.0]hex-2-ene or of 3-pentenoic acid chloride at 600° (0.1 s/1 Torr) leads to similar mixtures containing the stereoisomers of 2, 4-pentadienaldehyde and 1-propenylketene. These compounds, and methyl substituted derivatives thereof, equilibrate at 600° (0.1 s) through intramolecular processes involving cis/trans-isomerisations and [1,5]-H-shifts. It is shown that α, β-γ, δ-unsaturated aldehydes can be prepared in high yield through gas phase thermolysis of appropriately substituted acid chlorides.  相似文献   

8.
9.
10.
The rate of the isothermal transformation of γ into α Fe2O3 and the increase of the crystallites of α Fe2O3 during the transformation were measured using X-ray methods.  相似文献   

11.
On triplet sensitization (E)- 5 gives (Z)- 5 and isomerizes via C(δ), O-bond cleavage to the cyclobutanone 6 and the conjugated γ-ketoester 7 . - On singulet excitation 6 undergoes decarbonylation and yields the bicyclo [4.1.0]heptane 8 . However, on triplet sensitization 6 is converted to the isomeric tricyclononane 9 by a stereospecific oxa-di-π-methane rearrangement. The structure of 9 is determined by X-ray analysis of the p-nitrobenzoate 15: a = 10.573, b = 14.707, c = 13.494 Å, β = 112.40°, P21/n, Z, = 4.  相似文献   

12.
A new synthesis of 5α-androstano[3,2-b]pyridin-17β-ol acetate (VIa) and 17-methyl-5α-androstano[3,2-b]pyridin-17β-ol (VIb), first reported by Shimizu, Ohta, Ueno, and Takegoshi, was achieved. The analogous 5α - androstano[17,16-b]pyridin-3β-ol (XII), 5α-androstano[17,16-b]pyridin-3-one (XIVa), and androst-4-eno[17,16-b]pyridin-3-one (XIVb) were also prepared. An illustration of the method follows. Condensation of 3β-hydroxy-5α-androstan-17-one (VIIa) with 3-(2-furyl)acrolein afforded 16-[3-(2-furyl)-2-propenylidene]-3β-hydroxy-5α-androstan-17-one (VIIIa), the oxime (IXa) of which was thermally cyclized to 5α-androstano[17,16-b]-6′-(2-furyl)pyridin-3β-ol (Xa). 3β-Hydroxy-5α-androstano[17,16-b]pyridine-6′-carboxylic acid (XI) was obtained by ozonolysis of Xa. Thermal decarboxylation of XI gave XII. Cinnamaldehyde was used in place of 3-(2-furyl)acrolein to give the corresponding phenylpyridines.  相似文献   

13.
14.
15.
The UV. irradiation of 17 β-hydroxy-2-aza-4-androsten-3-one (1) , N-methyl-17 β-hydroxy-2-aza-4-androsten-3-one (3) , 17 β-hydroxy-4-aza-5 β-androst-1-en-3-one (2) and N-methyl-17 β-hydroxy-4-aza-5 β-androst-1-en-3-one (4) , gives rise to 1,10-seco (from 1 and 3 ) and 5, 10-seco (from 2 and 4 ) steroids.  相似文献   

16.
17.
18.
Successive treatment of N-acylsultams 3 with sodium hexamethyldisilazide, 1-chloro-1-nitrosocyclohexane ( 1 ), and aq. HCl gave diastereoisomerically pure, crystalline N-hydroxyamino-acid derivatives 5 . These were converted into various amino acids 7 , N-hydroxyamino acids 8 , and an N-Boc-amino acid 9 . (S, S)-Isoleucine ( 17 ) and (S, S)-2-acetamido-3-phenylbutyric acid ( 23 ) were obtained from N-crotonoylsultam 15 via 1,4-addition of an organomagnesium or organocopper reagent followed by enolate ‘amination’ with 1 .  相似文献   

19.
20.
The I2-catalyzed isomerization of allyl chloride to cis- and trans- l-chloro-l-propene was measured in a static system in the temperature range 225–329°C. Propylene was found as a side product, mainly at the lower temperatures. The rate constant for an abstraction of a hydrogen atom from allyl chloride by an iodine atom was found to obey the equation log [k,/M?1 sec?1] = (10.5 ± 0.2) ?; (18.3 ± 10.4)/θ, where θ is 2.303RT in kcal/mole. Using this activation energy together with 1 ± 1 kcal/mole for the activation energy for the reaction of HI with alkyl radicals gives DH0 (CH2CHCHCl? H) = 88.6 ± 1.1 kcal/mole, and 7.4 ± 1.5 kcal/mole as the stabilization energy (SE) of the chloroallyl radical. Using the results of Abell and Adolf on allyl fluoride and allyl bromide, we conclude DH0 (CH2CHCHF? H) = 88.6 ± 1.1 and DH0 (CH2CHCHBr? H) = 89.4 ± 1.1 kcal/ mole; the SE of the corresponding radicals are 7.4 ± 2.2 and 7.8 ± 1.5 kcal/mole. The bond dissociation energies of the C? H bonds in the allyl halides are similar to that of propene, while the SE values are about 2 kcal/mole less than in the allyl radical, resulting perhaps more from the stabilization of alkyl radicals by α-halogen atoms than from differences in the unsaturated systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号