首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerization of diisobutylvinyloxyaluminum, CH2?CHOAl(i-Bu)2, and diethylvinyloxyaluminum, CH2?CHOAlEt2, did not take place in the presence of typical radical or cationic initiators. The polymerization was realized at 60°C by the addition of tetrahydrofuran (THF) or tetrahydropyran, no conventional initiator being required. Diethyl ether, glyme, and dioxane were not effective on the polymerization. At Dry Ice–acetone temperature, polymerization did not take place, even in the presence of tetrahydrofuran, but did take place in the presence of both THF and SnCl4. The role of cyclic ethers in the polymerization was studied. Polymers were converted into poly(vinyl alcohol) (PVA) by solvolysis. All the resulting PVA was syndiotactic; particularly polymers obtained at ?78°C showed syndiotactivity of 89%, which is the highest value ever reported.  相似文献   

2.
Novel chiral N‐propargylphosphonamidate monomers (HC?CCH2NHP(?O)R? O? menthyl, 1 : R = CH3, 2 : R = C2H5, 3 : R = n‐C3H7, 4 : R = Ph) were synthesized by the reaction of the corresponding phosphonic dichlorides with menthol and propargylamine. Pairs of diastereomeric monomers 1 – 4 with different ratios were obtained due to the chiral P‐center and menthyl group. One diastereomer could be separated from another one in the cases of monomers 1 and 2 . Polymerization of 1 – 4 with (nbd)Rh+6‐C6H5B?(C6H5)3] as a catalyst in CHCl3 gave the polymers with number‐average molecular weights ranging from 5000 to 12,000 in 65–85%. Poly( 1 )–poly( 4 ) exhibited quantitative cis contents, and much larger specific rotations than 1 – 4 did in CHCl3. The polymers showed an intense Cotton effect around 325 nm based on the conjugated polyacetylene backbone. It was indicated that the polymers took a helical structure with predominantly one‐handed screw sense, and intramolecular hydrogen bonding between P?O and N? H of the polymers contributed to the stability of the helical structure. Poly( 1a ) and poly( 2a ) decreased the CD intensity upon raising CH3OH content in CHCl3/CH3OH. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1515–1524, 2007  相似文献   

3.
To establish the optimum conditions for obtaining high molecular weight polyacetals by the self‐polyaddition of vinyl ethers with a hydroxyl group, we performed the polymerization of 4‐hydroxybutyl vinyl ether (CH2?CH? O? CH2CH2CH2CH2? OH) with various acidic catalysts [p‐toluene sulfonic acid monohydrate, p‐toluene sulfonic anhydride (TSAA), pyridinium p‐toluene sulfonate, HCl, and BF3OEt2] in different solvents (tetrahydrofuran and toluene) at 0 °C. All the polymerizations proceeded exclusively via the polyaddition mechanism to give polyacetals of the structure [? CH(CH3)? O? CH2CH2CH2CH2? O? ]n quantitatively. The reaction with TSAA in tetrahydrofuran led to the highest molecular weight polymers (number‐average molecular weight = 110,000, weight‐average molecular weight/number‐average molecular weight = 1.59). 2‐Hydroxyethyl vinyl ether, diethylene glycol monovinyl ether, cyclohexane dimethanol monovinyl ether, and tricyclodecane dimethanol monovinyl ether were also employed as monomers, and polyacetals with various main‐chain structures were obtained. This structural variety of the main chain changed the glass‐transition temperature of the polyacetals from approximately ?70 °C to room temperature. These polyacetals were thermally stable but exhibited smooth degradation with a treatment of aqueous acid to give the corresponding diol compounds in quantitative yields. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4053–4064, 2002  相似文献   

4.
The addition of dialkyl (R = Me or Et) carbonates to poly(oxyethylene)-based solid polymeric electrolytes resulted in enhanced ionic conductivities. Relatively high conductivities in lithium batteries with solutions of lithium salts in di(oligooxyethylene) carbonates such as R( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR (R = Et, n = 1, 2, or 3, m = 0, 1, 2, or 3) and related carbonates were obtained. In this respect, related comb-shaped poly(oligooxyethylene carbonate) vinyl ethers of the type  CH2CH(OR) were prepared [R = ( OCH2 CH2 )nOC(O) O ( CH2CH2O )mR′; (1) n = 2 or 3, m = 0, R′ = Et; (2) n = 2 or 3; m = 3, R′ = Me]. The direct preparation of derived target polymers of this class by polymerization of the corresponding vinyl ether-type monomers could not be achieved because of a rapid in situ decarboxylative decomposition of these monomers (as formed) during the final step of their synthesis. Instead, a prepolymer was prepared by a living cationic polymerization of CH2CH (OCH2CH2 )n O C(O) CH3 (n = 2 or 3). The hydrolysis of its pendant ester groups, followed by the reaction of the hydrolyzed prepolymer with each of several alkyl chloroformates of the type Cl C(O) O( CH2CH2O )mR′ (m = 0, 2, or 3, R′ = Me or Et) resulted in the corresponding target polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2171–2183, 2002  相似文献   

5.
This paper focuses on two recent topics in living cationic polymerization of vinyl monomers, i.e., (a) Development of new initiating systems: RCOOH/Lewis acid for vinyl ethers; CH3CH(C6H5)Cl/SnCl4/nBu4NCl for styrene. (b) Synthesis of shape-controlled poly(vinyl ethers): Tri-armed star polymers; Multi-armed spherical polymers. For the RCOOH-based systems, a generalized concept of living cationic polymerization was discussed on the basis of the effects of the counteranions (or R) and Lewis acids (ZnCl2 and EtAlCl2). The CH3CH(C6H5)Cl-based system permitted a truly living cationic polymerization of styrene. The tri- and multi-armed poly(vinyl ethers) included new amphiphilic polymers of unique topology, solubility, etc., all of which were prepared by living cationic polymerization.  相似文献   

6.
Carboxylic acid or primary amine-terminated poly(isobutyl vinyl ethers) were synthesized by living cationic polymerizations with functionalized initiators (CH3CHIO? CH2CH2 ? X; X: that are the adducts of the corresponding vinyl ethers (CH2 ? CH ? OCH2CH2? X) with hydrogen iodide. In the presence of iodine, these initiators induced living cationic polymerization of isobutyl vinyl ether to give polymers with the α-end group of X originating from the initiators. The polymer molecular weights were regulated by the monomer to initiator feed ratio and the molecular weight distributions were very narrow (M w/M n ≤ 1.15). Subsequent deprotection of the terminal group X led to polymers with a terminal carboxylic acid or primary amine. 1H- and 13C-NMR analyses showed that the end functionalities of these polymers were all close to unity.  相似文献   

7.
Amine‐functionalized and amine‐carboxylate double‐functionalized polymers ( I and II , respectively) have been synthesized by a selective single addition of a protected 2‐aminoethyl vinyl ether (BocVE) {CH2 = CH[OCH2CH2N(Boc)2]; Boc = t‐butoxycarbonyl} onto a living cationic poly(n‐butyl vinyl ether) [poly(NBVE)] initiated with the SnCl4/n‐Bu4NCl system: ( I ) ‐(NBVE)n‐ CH2CH(OCH2CH2NH2)‐H; ( II ) ‐(NBVE)n‐CH2CH(OCH2CH2NH2)‐CH2CO2H. The single addition was examined with a set of alkene monomers less reactive than NBVE, including BocVE, 2‐chloroethyl vinyl ether, 2‐vinyloxyethylphtalimide, and styrene (St). Upon addition of 10 molar excess of these alkenes onto the living ends, only BocVE led to the intended single adduct, and this was attributed to a chelating interaction of the two carboxylate groups in the terminal BocVE unit with the growing poly(NBVE) terminal, thus sterically hampering further propagation. A simple acid‐catalyzed Boc‐deprotection led to the amino‐functionalized version I . Alternatively, an additional quenching the BocVE‐capped living end (the precursor of I ) with sodium malonate, followed by double deprotection of the Boc and the malonate groups gave the double‐functionalized version II . The selective addition of a single monomer molecule is thus a new method for addressable or site‐specific introduction of functional groups along polymer chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3375–3381, 2010  相似文献   

8.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

9.
Amphiphilic graft polymers of vinyl ethers (VEs) ( 6 ) where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(alkyl vinyl ether) segment were prepared on the basis of living cationic polymerization, and their properties and functions were compared with the corresponding amphiphilic star-shaped polymers. In toluene at ?15°C, the HI/ZnI2-initiated living block polymer 2 of an ester-containing VE (CH2? CHOCH2CH2OCOCH3) and isobutyl VE (IBVE) was terminated with the diethyl 2-(vinyloxy)ethylmalonate anion [ 3 ; ΦC(COOEt)2CH2CH2OCH ? CH2] ( 2/3 = 1/2 mole ratio) to give a macromonomer ( 4 ), H[CH2CH(OCH2CH2OCOCH3)] m-[CH2CH(OiBu)]n? C(COOEt)2CH2CH2OCH ? CH2 (m = 5, n = 15; M?n = 2600, M?w/M?n = 1.13, 1.10 vinyl groups/chain). Subsequently, 4 was homopolymerized with HI/ZnI2 in toluene at ?15°C. In 3 h, 85% of 4 was consumed and a graft polymer ( 5 ) was obtained [M?w = 15000, DPn (for 4 ) = 6]. The apparent M?w (10,900) of 5 by size-exclusion chromatography (SEC) is smaller than that by light scattering as well as that (18,300) by SEC of the corresponding linear polymer with the almost same molecular weight, indicating the formation of a multi-branched structure. Hydrolysis of the pendant esters in 5 gave the amphiphilic graft polymer 6 where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(IBVE) segment. The graft polymer 6 was found to interact specifically with small organic molecules (guests) with polar functional groups, and 6 differed in solubility and host-guest interaction from the corresponding star-shaped polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Vinyl pivalate (VPi) was polymerized in bulk by ultraviolet-ray initiation at low temperatures using 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN) and 2,2'-azobis(isobutyronitrile) (AIBN) as photoinitiators. High molecular weight (HMW) poly(vinyl pivalate) (PVPi), having a number-average degree of polymerization (Pn) of 13,000–28,000, was obtained at conversions below 30% and converted by saponification to a syndiotacticity-rich HMW poly(vinyl alcohol) (PVA) microfibrillar fiber with Pn of 7300–18,300, syndiotactic diad (S-diad) and triad contents of ∼ 64% and ∼ 39%, respectively, and crystal melting temperature (Tm) of ∼ 249°C. ADMVN gave higher Pn than AIBN. On the other hand, conversion was smaller with the former than with the latter, and it was found that the initiation rate of ADMVN was lower than that of AIBN. Pn of PVA was constant while Pn of the precursor PVPi increased with increasing conversion. The syndiotacticity, Tm and thermal stability of PVA obtained from PVPi were much superior to those of PVA derived from poly(vinyl acetate) prepared under the same polymerization conditions. Polymerization of VPi at lower temperatures gave PVA with higher syndiotacticity. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
The living cationic polymerization of vinyl ethers (VEs) having a (polar) functional pendant has been achieved by the hydrogen iodide/iodine (HI/I2) initiating system to give polymers with a very narrow molecular weight distribution (MWD) (Mw/Mn ≤ 1.2). The functional pendants include benzyl, saturated or unsaturated ester, (poly) oxyethylene, and substituted phenoxyl groups. Although these polar groups often disturb cationic vinyl polymerization by inducing chain transfer and termination, the HI/I2 initiator cleanly polymerized the “functionalized” VEs without side reactions, mostly in nonpolar media at low temperatures below −15 °C. The HI/I2-initiated living polymerization also provided facile methods to synthesize new functional polymers, including water-soluble polymers, macromolecular amphiphiles, and macromers, all having a narrow MWD. The simplest example is the living polymerization of VEs carrying an oxyethylene chain [-(CH2CH2O)n-R] as pendant, which directly yields water-soluble polymers. The debenzylation of poly(benzyl VE) prepared with HI/I2 led to poly(vinyl alcohol). Polymers of the saturated ester-containing monomers (2-acetoxyethyl and 2-benzoyloxyethyl VEs) were readily hydrolyzed into poly (2-hydroxyethyl VE), soluble in water and swellable in methanol. This lead was extended to the synthesis of a new amphiphile, poly(cetyl VE-b-2-hydroxyethyl VE), from a block copolymer of cetyl and 2-acetoxyethyl VEs prepared by their sequential living polymerization initiated with HI/I2. An adduct between HI and 2-vinyloxyethyl methacrylate [CH3-CH(I)-OCH2CH2OCOC(CH3) =CH2] was found to initiate living polymerizations of VEs in the presence of iodine; the products were methacrylate-type macromers carrying a poly(VE) side chain with a narrow chain-length distribution.  相似文献   

12.
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
The previously unresolved issue of polymerization of allyl monomers CH2?CHCH2X is overcome by a palladium‐catalyzed insertion polymerization of diallyl ether as a monomer. An enhanced 2,1‐insertion of diallyl ether as compared to mono‐allyl ether retards the formation of an unreactive five‐membered cyclic O‐chelate (after 1,2‐insertion) that otherwise hinders further polymerization, and also enhances incorporation in ethylene polymers (20.4 mol %). Cyclic ether repeat units are formed selectively (96 %–99 %) by an intramolecular insertion of the second allyl moiety of the monomer. These features even enable a homopolymerization to yield polymers (poly‐diallyl ether) with degrees of polymerization of DPn≈44.  相似文献   

14.
A series of multifunctional malonate anions, [Na⊕?C(COOEt)2CH2]mC6H6?m(I; m = 2–4), were examined as polymer coupling agents for the living cationic polymerization of vinyl ethers initiated with the hydrogen iodide/zinc iodide (HI/ZnI2) initiating system. The bifunctional anion ( 2 ;I, m = 2), 1,4-[Na⊕?C(COOEt)2CH2]2C6H4, terminated living polymers of isobutyl vinyl ether (IBVE) (DP n = 10) almost quantitatively in toluene at ?15°C to give coupled living polymers with doubled molecular weights in 96% yield; the dianion 2 was dissolved in tetrahydrofuran containing 18-crown-6 for maintaining the solution homogeneous. The yield of the coupled polymers was increased with shorter living chains or in less polar solvents. Also by coupling via 2 , ABA block copolymers were obtained from living AB block polymers of IBVE and an ester-functionalized vinyl ether (CH2?CHOCH2CH2OCOCH3). Coupling of living poly(IBVE) with the trifunctional anion ( 3 ; I, m = 3) led to tri-armed polymers in 56% yield, whereas with the tetrafunctional version ( 4 ; I, m = 4), only three out of the four anions reacted to give another tri-armed polymer in 85% yield. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Cationic polymerization of 2-vinyloxyethyl phthalimide ( 1 ) in CH2Cl2 at ?15°C with hydrogen iodide/iodine (HI/I2) as initiator led to living polymers of a narrow molecular weight distribution (M?w/M?n = 1.1–1.25). The number-average molecular weight of the polymers was in direct proportion to monomer conversion and could be controlled in the range of 1000–6000 by regulating the 1 /HI feed ratio. However, when a fresh monomer was supplied to the completely polymerized reaction mixture, the molecular weight of the polymers was not directly proportional to monomer conversion. The polymerization of 1 by boron trifluoride etherate (BF3OEt2) in CH2Cl2 at ?78°C gave polymers with relatively high molecular weight (M?w > 20,000) and broad molecular weight distribution (M?w/M?n ~ 2). The HI/I2-initiated polymerization of 1 was an order of magnitude slower than that of ethyl vinyl ether, probably because of the electron-withdrawing phthalimide pendant. Hydrazinolysis of the imide functions in poly( 1 ) gave a water-soluble poly(vinyl ether) ( 3 ) with aliphatic primary amino pendants.  相似文献   

16.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

17.
The Sonogashira–Hagihara coupling polymerization of d ‐hydroxyphenylglycine‐derived diiodo monomers 1–4 and platinum‐containing diethynyl monomer 5 gave the corresponding polymers [poly( 1–5 )–( 2–5 )] with number‐average molecular weights of 19,000–25,000 quantitatively. The polymers were soluble in CHCl3, CH2Cl2, THF, and DMF. CD and UV–vis spectroscopic analysis revealed that amide‐substituted polymers [poly( 1–5 ) and poly( 2–5 )] formed chiral higher‐order structures in solution, while ester‐substituted polymers [poly( 3–5 ) and poly( 4–5 )] did not. Poly( 1–5 ) formed one‐handed helices in THF/toluene mixtures, while it formed chiral aggregates in THF/MeOH mixtures. Poly( 1–5 ) emitted fluorescence with quantum yields ranging from 0.8 to 1.3%. The polymers usually aggregated in the solid state. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2452–2461  相似文献   

18.
Living cationic polymerizations of two silicon-containing vinyl ethers, 2-(t-butyldimethyl-silyloxyl)ethyl vinyl ether (tBuSiVE) and 2-(trimethylsilyloxyl)ethyl vinyl ether (MeSiVE), have been achieved with use of the hydrogen iodide/iodine (HI/I2) initiating system in toluene at ?15 or ?40°C, despite the existence of the acid-sensitive silyloxyl pendants. The living nature of the polymerizations was demonstrated by linear increases in the number-average molecular weights (M?n) of the polymers in direct proportion to monomer conversion and by their further rise upon addition of a second monomer feed to a completely polymerized reaction mixture. The polymers obtained in these experiments all exhibited very narrow molecular weight distributions (MWD) with M?w/M?n around or below 1.1. Desilylation of the polymers under mild conditions (with H+ for MeSiVE and F? for tBuSiVE) gave poly(2-hydroxyethyl vinyl ether), a water-soluble polyalcohol with a narrow MWD. The living processes also permitted clean syntheses of amphiphilic AB block copolymers and water-soluble methacrylate-type macromonomers, all of which bear narrowly distributed segments of the polyalcohol derived from the silicon-containing vinyl ethers.  相似文献   

19.
A series of polyacrylate monomers with F‐alkylalkyl [F(CF2)n(CH2)n] side groups were prepared by free‐radical polymerization. The effect of the chemical structure on the surface properties of poly(ethylene terephthalate)s was evaluated by variations in the relative length of the fluorocarbon and hydrocarbon units in the side group. The resulting polymers were quite surface‐active in the solid state. The surface and bulk organization was investigated by X‐ray photoelectron spectroscopy analysis. A strong correlation between the bulk organization and surface properties of the polymers was established. The outmost layer, formed from trifluoromethyl groups and some ester functions, suggests that the side chain is arranged irregularly in the polymer–air interface. The length of the lateral chain governs this organization: long fluorinated chains and short hydrocarbon spacers are essential elements of the molecular design for such low‐surface‐energy materials. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3737–3747, 2005  相似文献   

20.
A new polymer (polyalcohol) was synthesized by hydrogenation of an ethylene carbon monoxide (CO) copolymer produced by a radical method with a catalyst and H2. The Ru/α-alumina catalyst systems showed an excellent activity for hydrogenation of the radical copolymer of CH2CH2 and CO. Films prepared by melting and pressing the synthesized polyalcohol had a high gas barrier property and high tensile modulus. This new polymer has hydroxymethylenic units [ CH(OH) ] and ethylenic units [ CH2CH2 ] in its molecular structure. The new functional polymer poly(hydroxymethylene-co-ethylene),  [ CH(OH) ]n[ CH2CH2 ]m , is amorphous and has excellent and important properties as a high oxygen gas barrier film for wrapping and storage. This may be attributed to the new structure of poly(hydroxymethylene-co-ethylene) (PHME as an IUPAC name), or ethylene methine alcohol copolymer (EMOH as a generic name), compared to the other ethylene vinyl alcohol copolymer (EVOH as a generic name),  [ CH2CH2 ]m [ CH2CH(OH) ]n , which is used as one of the highest gas barrier polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 889–900, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号