首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The quantum yields of phosphorescence (Φp) of biacetyl have been determined in pure biacetyl, biacetyl-SO2, and biacetyl-c-C6H12 mixtures in experiments using bands of radiation centered at 3450, 3650, 3880, and 4348 Å. It has been shown that the unexpected effect of gas concentration on the quantum yields of the sulfur dioxide triplet-sensitized phosphorescence of biacetyl resulted largely from the significant destruction of biacetyl triplets at the wall of the cell. The kinetics of the variation of Φp with [Ac2], wavelength of the absorbed light, and added gases provide new estimates of the energy relations and the rate constants for the decomposition reaction of vibrationally rich biacetyl molecules in the first excited singlet state (1Ac2?): 1Ac2? → products (1), 1Ac2? + Ac21Ac2 + Ac2 (2); the minimum energy necessary in 1Ac2? for reaction (1) to occur is estimated to be about 72.8 kcal/mole above the ground state of biacetyl: k1/k2 = (4.3 ± 0.1) × 10?3M at 3450 Å, (4.07 ± 0.04) × 10?4M at 3650 Å, and (5.6 ± 0.4) × 10?5M at about 3800 Å. The variation of the rate constant ratio is shown to be consistent with the expectations of the simple theory of excited molecule decomposition. Biacetyl triplet (3Ac2) rate constants were determined by measurements of Φp in O2 and NO-containing mixtures: 3Ac2 + S → (Ac2–S, products) (8); for O2 = S, k8 = (5.76 ± 0.40) × 108 (3650 Å experiments), (5.76 ± 0.27) × 108 (4358 Å); for NO = S, k8 = (3.34 ± 0.20) × 109 (3650 Å), (3.33 ± 0.18) × 109 1./mole-sec (4358 Å). A comparison between these and previous findings of the SO2 triplet (3SO2)-sensitized excitation of biacetyl [5,6] show that the decomposition of the initial 3Ac2 product of the exothermic energy transfer reaction 3SO2 + Ac2 → SO2 + 3Ac2 is unimportant.  相似文献   

2.
The quantum yields of the sulfur dioxide triplet (3SO2)-sensitized phosphorescence of biacetyl (Φsens) were determined in experiments with N2–SO2–Ac2 and c-C6H12–SO2–Ac2 mixtures excited at 2875 Å at 27°C. The fraction of the biacetyl triplets which reacts homogeneously by radiative or nonradiative decay reactions was determined in a series of runs at constant [SO2]/[M] and [SO2]/[Ac2] ratios but at varied total pressure. A kinetic treatment of the Φsens results and singlet sulfur dioxide (1SO2) quenching rate constant data gave the following new kinetic estimates: 1SO2 + M → (SO2–M) (1b) 1SO2 + M → 3SO2 + M (2b); for 1SO2–N2 collisions, k2b/(k1b + k2b) = 0.033 ± 0.008; for 1SO2c-C6H12 collisions, k2b/(k1b ± k2b) = 0.073 ± 0.024; previous studies have shown this ratio to be 0.095 ± 0.005 for 1SO2–SO2 collisions. It was concluded that the inter-system crossing ratio in 1SO2 induced by collision is relatively insensitive to the nature of the collision partner M. However, the individual rate constants for the collision-induced spin inversion of 1SO2 (k2b) and the total 1SO2-quenching constants (k1b + k2b) are quite sensitive to the nature of M: k2b/k2a varies from 0.10 ± 0.03 for M = N2 to 1.11 ± 0.37 for M = c-C6H12, and (k1b + k2b)/(k1a + k2a) varies from 0.29 for M = N2 to 1.44 for M = c-C6H12; k1a and k1b are the rate constants for the reactions 1SO2 - SO2 → (2SO2) (1a) and 1SO2 + SO23SO2 + SO2 (2a), respectively.  相似文献   

3.
The mechanism of the reactions of electronically excited SO2 with isobutane has been studied through the measurement of the initial quantum yields of product formation in 3130 Å irradiated gaseous binary mixtures of SO2 and isobutane and ternary mixtures of SO2, isobutane, C6H6 or CO2. Under low-pressure conditions (P < 10 torr) the kinetic treatment of the present data shows that only one singlet and one triplet state, presumably the 1B1 and 3B1 states, are involved in the photoreaction mechanism. The data give k2a = 8.4 × 109; SO2(1B1) + isobutane → products (2a); k5a ? k5 = 8.7 × 108 l./mol·sec; SO2(3B1) + isobutane → products (5a) SO2(3B1) + isobutane → (SO2) + isobutane (5b) k1a/k1 = 0.145 ± 0.037; SO2(1B1) + SO2 → SO2(3B1) + SO2 (1a) SO2(1B1) + SO2 → (2SO2) (1b) k2b/k2 = 0.273 ± 0.018; SO2(1B1) + isobutane → SO2(3B1) + isobutane (2b); SO2(1B1) + isobutane → (SO2) + isobutane (2c) error limits are ± 2 σ. The contribution from the excited SO2(1B1) molecules to the quantum yields of the photolyses of SO2–isobutane mixtures is not negligible. Under high-pressure conditions (P > 10 torr) the low-pressure mechanism coupled with the saturation effect on the phosphorescence lifetimes of SO2(3B1) molecules cannot alone rationalize the quantum yields. The evaluation suggests that some nonradiative intermediate state (X) is involved in the formation of “extra” triplet molecules. This ill-defined state decays largely nonradiatively to SO2 in experiments at low pressures, X → SO2 (12). In the presence of C6H6 the low-pressure data give k7 = (8.5 ± 1.8) × 1010, and the high-pressure data give k7 = (8.3 ± 0.6) × 1010 and (9.9 ± 0.9) × 1010l./mol·sec; SO2(3B1) + C6H6 → nonradiative products (7). These estimates are in good agreement with values directly measured from low-pressure lifetime studies, (8.1 ± 0.7) × 1010 and (8.8 ± 0.8) × 1010l./mol·sec.  相似文献   

4.
The relative intensities of phosphorescence of SO2(3B1) molecules have been determined following the optical excitation of SO2(1B1) molecules by a 2662 Å laser pulse. From a kinetic treatment of these measurements, the intersystem crossing ratio, k2b/(k1b + k2b), was determined; SO2(1B1) + M → SO2(3B1) + M (2b); SO2(1B1) + M → SO2 + M (1b). With M = O2, N2, Ar, CO2, and CO, k2b/(k1b + k2b) = 0.030 ± 0.013, 0.034 ± 0.029, 0.025 ± 0.005, 0.052 ± 0.014, and 0.045 ± 0.028, respectively. These data allow a new, more quantitative evaluation of the extent of involvement of the “excess” triplet SO2 in the 3130 Å-irradiated mixtures of SO2 and CO at high pressures [5, 6]. The new data are also of direct interest in the determination of the theoretical maximum rates of photooxidation of SO2 in the sunlight-irratiated atmosphere of the earth.  相似文献   

5.
The photolysis of SO2 at 3130 Å, FWHM = 165 Å, and 22°C has been investigated in the presence of cis- and trans-2-pentene. Quantum yields for the SO2 photosensitized isomerization of one isomer to the other have been made for a variation in the [SO2]/[C5H10] ratio of 3.41–366 for cis-2-C5H10 and of 1.28–367 for trans-2-C5H10. A kinetic analysis of each of these systems permitted new estimates to be made for the SO2 collisionally induced intersystem crossing ratio at 3130 Å from SO2(1B1) to SO2(3B1). The estimates of k1a/(k1a + k1b) obtained are 0.12 ± 0.01 and 0.12 ± 0.02 (two different kinetic analyses in the cis-2-C5H10 study) and 0.20 ± 0.05 and 0.20 ± 0.04 (two different kinetic analyses in the trans-2-C5H10 study). Collisionally induced intersystem crossing ratios of k2a/(k2a + k2b) = 0.51 ± 0.10 and k3a/(k3a + k3b) = 0.62 ± 0.12 were obtained for cis- and trans-2-pentene, respectively. Quenching rate constants at 22°C for removal of SO2(3B1) molecules by cis- and trans-2-C5H10 were estimated as (1.00 ± 0.29) × 1011 l./mole·sec and (0.857 ± 0.160) × 1011 l./mole/sec, respectively. Prolonged irradiations, extrapolated to infinite irradiation times, for mixtures initially containing SO2 and pure isomer, either the cis or trans, yielded a photostationary composition of [trans-2-pentene]/[cis-2-pentene] = 2.1 ± 0.1.  相似文献   

6.
The quantum yields of SO3 formation have been determined in pure SO2 and in SO2 mixtures with NO, CO2, and O2 using both flow and static systems. In separate series of experiments excitation of SO2 was effected within the forbidden band, SO2(3B1) ← \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm SO}_2 (\tilde X,^1 A_1 ) $$\end{document}, and within the first allowed singlet band at 3130 Å. The values of Φ were found to be sensitive to the flow rate of the reactants. These results and the apparently divergent quantum yield results of Cox [10], Allen and coworkers [24, 26, 29], and Okuda and coworkers [11] were rationalized quantitatively in terms of the significant occurrence of the reactions SO + SO3 → 2SO2 (2), and 2SO → SO2 + S [or (SO)2] (3), in experiments of long residence time. From the present rate data, values of the rate constants were estimated, k2=(1.2±0.7) × 106; k3=(5±4) × 105 l˙/mole · sec. Φ values from triplet excitation experiments at high flow rates of NO? SO2 and CO2? SO2 mixtures showed the sole reactant with SO2 leading to SO3 formation in this system to be SO2(3B1); SO2(3B1) + SO2 → SO3 + SO(3Σ?) (la); k=(4.2±0.4) × 107 l./mole · sec. With excitation of SO2 at 3130 Å both singlet and triplet excited states play a role in SO3 formation. If the reactive singlet state is 1B1, the long-lived fluorescent state, SO2(1B1) + SO2 → SO3 + SO (1 Δ or 3Σ?) (lb), then k=(2.2±0.5) × 109 l./mole · sec. From the observed inhibition of SO formation by added nitric oxide, it was found that the SO3-forming triplet state, generated in this singlet excited SO2 system, had a relative reactivity toward SO2 and NO which was equal within the experimental error to that observed here for the SO2(3B1) species. Either SO2(3B1) molecules were created with an unexpectedly high efficiency in 3130 Å excited SO2(1B1) quenching collisions, or another reactive triplet (presumably 3A2 or 3B2) of almost identical reactivity to SO2(3B1) was important here.  相似文献   

7.
Quantum yield measurements for the SO2(3B1) photosensitized isomerization of cis-1,2-difluoroethylene have been made at 3712 Å and 22°C. The [SO2]/[cis-C2F2H2] ratio was varied from 47.4 to 455 and the quantum yield measurements over this variation of concentration ratios were consistent with a mechanism in which SO2(3B1) molecules and the cis isomer form a collision intermediate which decomposes with a probability of 0.42 ± 0.17 and 0.58 ± 0.17 of producing trans- and cis-1,2-difluoroethylene, respectively. When SO2 was subjected to prolonged irradiations in the presence of initially either pure cis- or pure trans-1,2-difluoroethylene, a photostationary composition, [cis]/[trans] = 1.0 ± 0.2, was obtained. The rate constant at 22°C for removal of SO2(3B1) molecules by cis-1,2-difluoroethylene was estimated to be (1.72 ± 0.72) × 1010 1./mole · sec.  相似文献   

8.
The chemical reactions of SO2(3B1) molecules with cis- and trans-2-butene have been studied in gaseous mixtures at 25°C by excitation of SO2 within the SO2(3B1) → SO2(+, 1A1) ‘forbidden’ band using 3500–4100-Å light. The initial quatum yields of olefin isomerization were determined as a function of the [SO2]/[2-butene] ratio and added gases, He and O2. The kinetic treatment of these data suggests that there is formed in the SO2(3B1) quenching step with either cis- or trans-2-butene, some common intermediate, probably a triplet addition complex between SO- and olefin. It decomposes very rapidly to form the 2-butene isomers in the ratio [trans-2-butene]/[cis-2-butene] = 1.8. In another series of experiments SO2 was excited using a 3630 ± 1-Å laser pulse of short duration, and the SO2(3B1) quenching rate constants with the 2-butenes were determined from the SO2(3B1) lifetime measurements. The rate constants at 21°C are (1.29 ± 0.18) × 1011 and (1.22 ± 0.15) × 1011 l/mole·sec with cis-2-butene and trans-2-butene, respectively, as the quencher molecule. Within the experimental error these quenching constants equal those derived from the quantum yield data. Thus the rate-determining step in the isomerization reaction is suggested to be the quenching reaction, presumably the formation of the triplet SO2-2-butene addition complex. In a third series of experiments using light scattering measurements, it was found that the aerosol formation probably originates largely from SO3 and H2SO4 mist formed following the reaction SO2(3B1) + SO2 → SO3 + SO(3Σ?). Aerosol formation from photochemically excited SO2-olefin interaction is probably unimportant in these systems and must be unimportant in the atmosphere.  相似文献   

9.
The Arrhenius parameters have been determined for the SO2(3B1) quenching reaction (9), SO2(3B1) + M → (SO2 ? M), for 21 different molecules as quenching partner M. The rate constants were calculated from phosphorescence lifetime measurements made over a range of reactant pressures and temperatures. Excitation of the SO2 (3B1) molecules was accomplished by two very different methods: (1) a 3829 Å laser pulse generated the triplet directly through absorption within the “forbidden” SO2 (3B1) → SO2 (1A1) band; (2) a broadband Xe-flash system generated SO2(3B1) molecules and triplets were formed subsequently by intersystem crossing, SO2(1B1) + M → SO2(3B1) + M. The measured rate constants were independent of the method of triplet formation employed. For the atmospheric gases, the activation energies (kcal/mole) were identical within the experimental error: N2, 2.9 ± 0.4; 02, 3.2 ± 0.5; Ar, 2.8 ± 0.6; CO2, 2.8 ± 0.4; CO, 2.7 ± 0.4; CH4, 2.5 ± 0.6. This energy corresponds to the first region of the SO2(3B1) → SO2(1A1) absorption spectra in which Brand and coworkers observe strong perturbations. It is suggested that the quenching in these cases results largely from the physical process involving potential energy surface crossing to another electronic state. Activation energies for SO2(3B1) quenching by the paraffinic hydrocarbons show a regular decrease in the series ethane, neopentane, propane, n-butane, cyclohexane, and isobutane, which parallels closely the decrease in C? H bond energies in these compounds. These and other data are most consistent with the dominance of chemical quenching in these cases. The rate constants for the olefinic and aromatic hydrocarbons and nitric oxide show only very small variations with temperature change, and they are near the kinetic collision number. These data support the hypothesis that quenching in these cases is associated with the formation of a charge-transfer complex and subsequent chemical interactions between the SO2(3B1) molecule and the π-system of these compounds.  相似文献   

10.
The photolysis of SO2 at 3080 Å, FWHM = 150 Å, and 22°C has been investigated in the presence of cis- and trans-C2F2H2. Quantum yield measurements for the photosensitized isomerization of cis-C2F2H2 to trans-C2F2H2 have been made for a variation in the [SO2]/[cis-C2F2H2] ratio from 0.992 to 253. The results fit a mechanism which is consistent with the SO2(3B1) state being the reactive excited state of sulfur dioxide. A mechanism employing only the SO2(1B1) and SO2(3B1) excited states is quite satisfactory to rationalize the data. A value for the SO2 collisionally induced intersystem crossing efficiency from SO2(1B1) to SO2(3B1) of 0.35 ± 0.14 was estimated while the cis-C2F2H2 efficiency was found to be 0.030 ± 0.012. The rate constant at 22°C for the removal of SO2(3B1) molecules by cis-C2F2H2 was found to be (1.43 ± 0.13) × 10101./mole · sec. A photostationary composition, [cis]/[trans] = 1.0 ± 0.1, was found from prolonged irradiations of SO2 in the presence of the cis and trans isomers.  相似文献   

11.
The mechanism of the photolysis of formaldehyde was studied in experiments at 3130 Å and in the pressure range of 1–12 torr at 25°C. The experiments were designed to establish the quantum yields of the primary decomposition steps (1) and (2), CH2O + hν → H + HCO (1): CH2O + hν → H2 + CO (2), through the effects of added isobutene, trimethylsilane, and nitric oxide on ΦCO and Φ. The ratio ΦCO/Φ was found to be 1.01 ± 0.09(2σ) and (Φ + ΦCO)/2 = 1.10 ± 0.08 over the range of pressures and a 12-fold change in incident light intensity. Isobutene and nitric oxide additions reduced Φ to about the same limiting value, 0.32 ± 0.03 and 0.34 ± 0.04, respectively, but these added gases differed in their effects on ΦCO. With isobutene addition ΦCO/Φ reached a limiting value of 2.3; with NO addition ΦCO exceeded unity. The addition of small amounts of Me3SiH reduced Φ to 1.02 ± 0.08 and lowered ΦCO to 0.7. These findings were rationalized in terms of a mechanism in which the “nonscavengeable,” molecular hydrogen is formed in reaction (2) with ?2 = 0.32 ± 0.03, while the “free radical” hydrogen is formed in reaction (1) with ?1 = 0.68 ± 0.03. In the pure formaldehyde system these reactions are followed by (3)–(5): H + CH2O → H2 + HCO (3); 2HCO → CH2O + CO (4); 2HCO → H2 + 2CO (5). The data suggest k4/k5 ? 5.8. Isobutene reduced Φ by the reaction H + iso-C4H8 → C4H9 (20), and the results give k20/k3 ? 43 ± 4, in good agreement with the ratio of the reported values of the individual constants k3 and k20.  相似文献   

12.
The reactions of S + OH → SO + H (1) and SO + OH → SO2 + H (2) were studied in a discharge flow reactor coupled to an EPR spectrometer. The rate constants obtained under the pseudo-first-order conditions with an excess of S or SO were found to be k1 = (6.6 ± 1.4) × 10?11 and k2 = (8.4 ± 1.5) × 10?11 at room temperature. Units are cm3/molec·sec. Besides no reactivity was observed between S and CO2 at 298 K and between CIO and SO2 up to 711 K.  相似文献   

13.
The photolysis of SO2 at 3712 Å in the presence of the 1,2-dichloroethylenes has been investigated at 22deg;C. The data are consistent with the SO2(3B1) photosensitized isomerization of the 1,2-dichloroethylene isomer. A kinetic treatment of the initial quantum yield data was consistent with the formation of a polarized charge-transfer intermediate whenever SO2(3B1) molecules and one of the 1,2-dichloroethylene isomers collide which ultimately decays unimolecularly to the cis-isomer with a probability of 0.70 ± 0.26 and to the trans-isomer with a 0.37 ± 0.16 probability. Quenching rate constants for removal of SO2(3B1) molecules by cis- and trans-1,2-dichloroethylene have been estimated from quantum yield data and from laser excited phosphorescence lifetimes using an excitation wavelength of 3130 Å. Estimates of the quenching rate constant (units of 1./mole ± sec) are for the cis-isomer, (1.63 ± 0.71) × 1010, quantum yield data, and (2.44 ± 0.11) × 1010, lifetime data; and for the trans-isomer,(2.59 ± 0.09)×1010, lifetime data, and (2.35 ±0.89) × 1010, quantum yield data. An experimentally determined photostationary composition,[cis-C2Cl2H2]/[trans-C2Cl2H2] = 1.8 - 0.1, was in good agreement with a value of 2.00 - 1.15 which was predicted from rate constants derived in this study.  相似文献   

14.
The reaction of (diaqua)(N,N′‐ethylene‐bis(salicylidiniminato)manganese(III) with aqueous sulphite buffer results in the formation of the corresponding mono sulphito complex, [Mn(Salen)(SO3)] (S‐bonded isomer) via three distinct paths: (i) Mn(Salen)(OH2)2+ + HSO3 → (k1); (ii) Mn(Salen)(OH2)2+ + SO32− → (k2); (III) Mn(Salen)(OH2)(OH) + SO32− → (k3) in the stopped flow time scale. The fact that the mono sulphito complex does not undergo further anation with SO32−/HSO3 may be attributed to the strong trans‐activating influence of the S‐bonded sulphite. The values of the rate constants (10−2ki/dm2 mol−1 s−1 at 25°C, I = 0.3 mol dm−3), ΔHi#/kJ mol−1 and ΔSi#/J K−1 mol−1 respectively are: 2.97 ± 0.27, 42.4 ± 0.2, −55.3 ± 0.6 (i = 1); 11.0 ± 0.8, 33 ± 3, −75 ± 10 (i = 2); 20.6 ± 1.9, 32.4 ± 0.2, −72.9 ± 0.6 (i = 3). The trend in reactivity (k2 > k1), a small labilizing effect of the coordinated hydroxo group (k3/k2 < 2), and substantially low values of ΔS# suggest that the mechanism of aqua ligand substitution of the diaqua, and aqua‐hydroxo complexes is most likely associative interchange (Ia). No evidence for the formation of the O‐bonded sulphito complex and the ligand isomerization in the sulphito complex, (MnIII‐OSO2 → MnIII‐SO3), ensures the selectivity of the MnIII centre toward the S‐end of the SIV species. The monosulphito complex further undergoes slow redox reaction in the presence of excess sulphite to produce MnII, S2O62− and SO42−. The formation of dithionate is a consequence of the fast dimerization of the SO3−. generated in the rate determining step and also SO42− formation is attributed to the fast scavenging of the SO3−. by the MnIII species via a redox path. The internal reduction of the MnIII centre in the monosulphito complex is insignificant. The redox reaction of the monosulphitomanganese(III) complex operates via two major paths, one involving HSO3− and the other SO32−. The electron transfer is believed to be outersphere type. The substantially negative values of activation entropies (ΔS# = −(1.3 ± 0.2) × 102 and −(1.6 ± 0.2) × 102 J K−1 mol−1 for the paths involving HSO3− and SO32− respectively) reflect a considerable degree of ordering of the reactants in the act of electron transfer. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 627–635, 1999  相似文献   

15.
The quantum efficiencies of the primary processes in formaldehyde photolysis (?1 and ?2) were determined as a function of wavelength in the range from 2890 to 3380 Å and at 25°C: CH2O + hν → H + HCO (1); CH2O + hν → H2 + CO (2). The estimates of ?2 were derived from ΦH2 values obtained in photolyses of CH2O-isobutene mixtures at high isobutene concentrations where H-atom scavenging was essentially complete. Values of ?1 + ?2, obtained from the ΦH2 values from the pure CH2O photolyses, were very near unity at all but the longest wavelengths employed: ΦH2 = ?1 + ?2 = 1.02 (2930 Å); 1.12 (3130 Å); 1.06 (3150 Å); 1.01 (3250 Å); 1.0 (3335 Å); 0.75 (3380 Å). Our results showed that the onset of photodissociation of CH2O by process (1) was at 3370 ± 10 Å; this corresponds to D(H-CHO) = 84.8 plusmn; 0.3 kcal/mol. The values of ?1 increased regularly with decreasing wavelength from 0 at 3370 Å to ~0.7 at 3175 Å. Little further variation in ?1 occurred from 3175 to 2890 Å. For experiments at λ = 3300 Å, the addition of CO2 (~300 torr) reduced ?2, while the effect on ?1 appeared to be small. The present results coupled with the solar irradiance estimates of Peterson [24] and the extinction data for CH2O from McQuigg and Calvert [7] were used to make new estimates of the apparent first-order rate constants (min?;1 × 103) of process (1) in the lower atmosphere at various solar zenith angles (in parentheses): 2.31 (0°); 2.17 (20°); 1.71 (40°); 0.92 (60°); and 0.17 (78°). The corresponding first-order rate constants (min?1 × 103) for solar light absorption by CH2O in the lower atmosphere are 7.74 (0°); 7.38 (20°); 6.18 (40°); 3.80 (60°); and 0.96 (78°).  相似文献   

16.
By allowing dimethyl peroxide (10?4M) to decompose in the presence of nitric oxide (4.5 × 10?5M), nitrogen dioxide (6.5 × 10?5M) and carbon tetrafluoride (500 Torr), it has been shown that the ratio k2/k2′ = 2.03 ± 0.47: CH3O + NO → CH3ONO (reaction 2) and CH3O + NO2 → CH3ONO2 (reaction 2′). Deviations from this value in this and previous work is ascribed to the pressure dependence of both these reactions and heterogeneity in reaction (2). In contrast no heterogeneous effects were found for reaction (2′) making it an ideal reference reaction for studying other reactions of the methoxy radical. We conclude that the ratio k2/k2′ is independent of temperature and from k1 = 1010.2±0.4M?1 sec?1 we calculate that k2′ = 109.9±0.4M?1 sec?1. Both k2 and k2′ are pressure dependent but have reached their limiting high-pressure values in the presence of 500 Torr of carbon tetrafluoride. Preliminary results show that k4 = 10.9.0±0.6 10?4.5±1.1M?1 sec?1 (Θ = 2.303RT kcal mole?1) and by k4 = 108.6±0.6 10?2.4±1.1M?1 sec?1: CH3O + O2 → CH2O + HO2 (reaction 4) and CH3O + t-BuH → CH3OH + (t-Bu) (reaction 4′).  相似文献   

17.
The thermally and radiolytically induced chain decomposition of methanesulfonyl chloride (MeSO2Cl) in liquid cyclohexane (RH) was studied at 150°C. The main products, chlorocyclohexane, sulfur dioxide, and methane, are formed in almost equal yields, and a relatively small amount of methyl chloride is also observed. The formation and addition of SO2 strongly inhibit the chain decomposition reaction. By kinetic analysis it is shown that the formation of the main products can be explained only in terms of a mechanism that postulates the decomposition of MeSO2, and that the alternative mechanism of methane and SO2 formation via the methanesulfinic acid is inconsistent with the kinetic behavior of the system. For the reactions Me + MeSO2Cl → MeCl + MeSO2(2b), Me + RH → MeH + R (4), and Me + CCl4 → MeCCl4 → MeCl + CCl3 (15b) the following rate constant ratios are determined; k2b/k4=2.17±0.20 and k2b/k15b=2.63±0.52. For the reactions R + MeSO2Cl → RCl + MeSO2(2a) and R + CCl4 → RCl + CCl3 (15a), k2a/k15a is equal to 1.55±0.05. In addition the equilibrium constant K7 for the reaction R + SO2 ? RSO2 (7) is estimated as being equal to (9.4±3) × 103 mole/l.  相似文献   

18.
The emissions of biacetyl excited at 4200 Å were studied at pressures down to 10?3 torr. Apart from the well-known nanosecond fluorescence, a new emission of the same spectral composition was found with a non-exponential decay in the microsecond range. Furthermore the phosphorescence, as defined by its spectral composition, was found to be collisionally induced.The results imply that after excitation, the molecule rapidly transfers (rate constant kS→T) to the triplet state, giving rise to the nanosecond decay time; and can then transfer back to the singlet state (rate constant kT→S), giving rise to the microsecond emission. At the same time internal conversion can occur (kS→S0). From an analysis of the data we find for kS→S0 = 2.4 × 107 sec?1, kS→T = 7.6 × 107 sec?1, kT→S = 1.9 × 105 sec?1. The kinetic treatment can be transformed to a quantum mechanical one, yielding values for the triplet level density (?T), the coupling element VST and the number of triplet states (N) coupled to the singlet excited. At 4200 Å we find ?T = 6.3 × 105cm, VST = 1.0 × 10?5 cm?1, N = 400.Phosphorescence occurs only when the molecule is deactivated by collisions to a vibronic triplet state below the vibrationless excited singlet state. The efficiency of biacetyl collisions is 0.54.  相似文献   

19.
The kinetics of stripping of Ni2+ from a Ni‐BTMPPA complex, dissolved in a kerosene solution of BTMPPA (H2A2, Cyanex 272), by acidic sulfate‐acetato solution, was studied using the single (falling) drop technique and flux (F) method of data treatment. The empirical flux equation at 303 K is Fb (kmol/m2s) = 10?4.35 [Ni2+] (1+10?3.42 [H+]?1)?1 ([H2A2](o)0.5+2.50 [H2A2](o))?1 (1+6[SO42?]) (1+3.20 [Ac?]). Activation energy (Ea), entropy change in activation (ΔS±), and enthalpy change in activation (ΔH±) were measured under different experimental conditions. Based on the empirical flux equation, Ea and ΔS±, the mechanism of Ni2+ stripping is provided. In a low [H+] region, the stripping reaction steps appear as [NiA+] → Ni2+ + A? and [Ni(HA2)2](int) → [NiHA2]+(int) + HA2(int)? in lower and higher concentration regions of free BTMPPA, respectively, provided [SO42?] and [Ac?] are kept low. However, at higher [H+] concentrations, the stripping is under diffusion control. With increasing [SO42?] and [Ac?], the enhancement of the rate is attributed to the attack of the Ni(II) complex by SO42? or HSO4? and Ac? to form NiSO4 or NiHSO4+ and NiAc+ complexes. Negative ΔS± values indicate that the rate‐determining stripping reaction steps occur via an substitution nucleophilic, bimolecular (SN2) mechanism.  相似文献   

20.
The [2.2.2]hericene ( 6 ), a bicyclo[2.2.2]octane bearing three exocyclic s-cis-butadiene units has been prepared in eight steps from coumalic acid and maleic anhydride. The hexaene 6 adds successively three mol-equiv. of strong dienophiles such as ethylenetetracarbonitrile (TCE) and dimethyl acetylenedicarboxylate (DMAD) giving the corresponding monoadducts 17 and 20 (k1), bis-adducts 18 and 21 (k2) and tris-adducts 19 and 22 (k3), respectively. The rate constant ratio k1/k2 is small as in the case of the cycloadditions of 2,3,5,6-tetramethylidene-bicyclo [2.2.2]octane ( 3 ) giving the corresponding monoadducts 23 and 27 (k1) and bis-adducts 25 and 29 (k2) with TCE and DMAD, respectively. Constrastingly, the rate constant ratio k2/k3 is relatively large as the rate constant ratio k1/k2 of the Diels-Alder additions for 5,6,7,8-tetramethylidenebicyclo [2.2.2]oct-2-ene ( 4 ) giving the corresponding monoadducts 24 and 28 (k1) and bis-adducts 26 and 30 (k2). The following second-order rate constants (toluene, 25°) and activation parameters were obtained for the TCE additions: 3 +TCE→ 23 : k1 = 0.591±0.012 mol?1·l·s?1, ΔH=10.6±0.4 kcal/mol, and ΔS = ?24.0±1.4 cal/mol·K (e.u.); 23 +TCE→ 25 : k2=0.034±0.0010 mol?1·l·s?1, ΔH = 10.6±0.6 kcal/mol, and ΔS = ?29.7±2.0 e.u.; 4 +TCE→ 26 : k1 = 0.172±0.035 mol?1·l·s?1, ΔH 11.3±0.8 kcal/mol, and ΔS = ?24.0±2.8 e.u.; 24 +TCE→ 26 : k2 = (6.1±0.2)·10?4 mol?1·l·s?1, ΔH = 13.0±0.3 kcal/mol, and ΔS = ?29.5±0.8 e.u.; 6 +TCE→ 17 : k1 = 0.136±0.002 mol?1·l·s?1, ΔH = 11.3±0.2 kcal/mol, and ΔS = ?24.5±0.8 e.u.; 17 +TCE→ 18 : k2 = 0.0156±0.0003 mol?1·l·s?1, ΔH = 10.9±0.5 kcal/mol, and ΔS = ?30.1 ± 1.5 e.u.; 18 +TCE→ 19 : k3=(5±0.2) · 10?5 mol?1 mol?1 ·l·s?1, ΔH = 15±3 kcal/mol, and ΔS = ?28 ± 8 e.u. The following rate constants were evaluated for the DMAD additions (CD2Cl2, 30°): 6 +DMAD→ 20 : k1 = (10±1)·10?4 mol?1 · l·s?1; 20 +DMAD→ 21 : k2 = (6.5±0.1) · 10?4 mol?1 ·l·?1; 21 +DMAD→ 22 : k3 = (1.0±0.1) · 10?4 mol?1 ·l·s?1. The reactions giving the barrelene derivatives 19, 22, 26 and 30 are slower than those leading to adducts that are not barrelenes. The former are estimated less exothermic than the latter. It is proposed that the Diels-Alder reactivity of exocyclic s-cis-butadienes grafted onto bicycle [2.2.1]heptanes and bicyclo [2.2.2]octanes that are modified by remote substitution of the bicyclic skeletons can be affected by changes inthe exothermicity of the cycloadditions, in agreement with the Dimroth and Bell-Evans-Polanyi principle. Force-field calculations (MMPI 1) of 3, 4, 6 and related exocyclic s-cis-butadienes as a moiety of bicyclo [2.2.2]octane suggested single minimum energy hypersurfaces for these systems (eclipsed conformations, planar dienes). Their flexibility decreases with the degree of unsaturation of the bicyclic skeleton. The effect of an endocyclic double bond is larger than that of an exocyclic diene moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号