共查询到20条相似文献,搜索用时 0 毫秒
1.
A kinetic method for the determination of trace nitrite (7 × 10?9–1.2 × 10?6 M) based on its catalytic effect on the reaction between potassium bromate and thionine in strongly acidic media is reported. The reaction is monitored spectrophotometrically by measuring the decreasing colour of thionine at 602 nm by the fixed-time method. At a given time of 5 min at 30°C, the detection limit is 2 × 10?9 M (0.001 absorbance ratio, b = 1 cm) and the relative standard deviation for 1 × 10?6 M nitrite is 2.6% (n = 6). The method is free from most interferences, especially from large amounts of nitrate. The procedure was successfully applied to the determination of trace nitrite in natural water and sausage samples without preconcentration and separation. 相似文献
2.
3.
A highly sensitive spectrophotometric method is described for the determination of trace amounts of osmium(VIII), based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 540 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1x10(-4) mol l(-1) carminic acid, 0.013 mol l(-1) hydrogen peroxide and pH 10 at 25 degrees C. By using the recommended procedure, the calibration graph was linear from 0.1 to 1.5 ng ml(-1) of osmium; the detection limit was 0.02 ng ml(-1); the RSD for five replicate determinations of 0.2-1.4 ng ml(-1) was in the range of 1.8-4.7%. The influence of several foreign ions on osmium determination were studied and the effect of interfering ions were removed by extracting osmium into isobuthyl methyl ketone and back extracting into sodium hydroxide solution. 相似文献
4.
A new flow injection catalytic spectrophotometric method is proposed for the simultaneous determination of nitrite and nitrate based on the catalytic effect of nitrite on the redox reaction between crystal violet and potassium bromate in phosphoric acid medium and nitrate being on-line reduced to nitrite with a cadmium-coated zinc reduction column. The redox reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of crystal violet at the maximum absorption wavelength of 610 nm. A technique of inserting a reduction column into sampling loop is adopted and the flow injection system produces a signal with a shoulder. The height of shoulder in the ascending part of the peak corresponds to the nitrite concentration and the maximum of the peak corresponds to nitrate plus nitrite. The detection limits are 0.3 ng ml−1 for nitrite and 1.0 ng ml−1 for the nitrate. Up to 32 samples can be analyzed per hour with a relative standard deviation of less than 2%. The method has been successfully applied for the simultaneous determination of nitrite and nitrate in natural waters. 相似文献
5.
溴酸钾氧化茜素绿催化光度法测定痕量亚硝酸根 总被引:15,自引:6,他引:15
基于酸性介质溴酸钾氧化茜紊绿反应,提出了测定痕量亚硝酸根新的催化光度法.本法的Sandell灵敏度为9.4×10~(-5)μg/cm~2亚硝酸态氮,测定亚硝酸根量的线性范围为0.01~0.12μg/ml,可用于水样中亚硝酸根测定。 相似文献
6.
Peroxynitrous acid (ONOOH) was produced by the on-line mixing of acidified hydrogen peroxide with nitrite in a flow system. A strong chemiluminescent (CL) emission was observed when ONOOH reacted with carbonate without any special CL reagents. When cotton was present in the CL cell, the CL emission was enhanced significantly. The method was developed to determine nitrite, which showed a key improvement that any CL reagents and sensitizers were not used, resulting in better selectivity. The applicability of the present CL system was demonstrated for the sensitive and selective determination of nitrite in natural water samples without any special pretreatment. Good agreements were obtained for the determination of nitrite in tap and well waters between the present approach and a standard spectrophotometric method. The average precision was 4.6% (n=7) and detection limit (S/N=3) was 1.0×10−7 M. Based on the CL spectrum, UV spectra, and dissolved oxygen measurement, a possible CL mechanism was proposed. ONOOH was an unstable compound in acidic solution and could be quenched into peroxynitrite (ONOO−) in basic solution. ONOO− reacted with CO2 to produce ONOOCO2−, which can rapidly decompose into NO2 and CO3− radicals. In the presence of H+, CO3− radicals can protonate to bicarbonate radical (HCO3). The recombination of HCO3 radicals and decomposition can lead to light emission. 相似文献
7.
A simple kinetic spectrophotometric method was developed for the determination of osmium. The method is based on the catalytic effect of osmium as osmium tetroxide on the oxidation of gallocyanine by bromate at pH 7. The reaction is monitored spectrophotometrically by measuring the decreasing absorbance of gallocyanine at 620 nm by the fixed-time method. A detection limit of 0.01 ng/ml and linear calibration curve from 0.1 to 100 and from 100 to 1200 ng/ml Os(VIII) is reported. The relative standard deviation for 0.0100 microg/ml Os(VIII) is 0.8% (N = 10). The method is free from most interferences. Osmium in synthetic samples is determined by this method, with satisfactory results. 相似文献
8.
Highly sensitive catalytic determination of molybdenum 总被引:1,自引:0,他引:1
A novel, highly sensitive, selective, and simple kinetic method was developed for the determination of Mo(VI) based on its catalytic effect on the oxidation of 1-amino-2-naphthol-4-sulfonic acid (ANSA) with H2O2. The reaction was followed spectrophotometrically by tracing the oxidized product at 465 nm after 30 min of mixing the reagents. The optimum reaction conditions were: 10 mmol l−1 ANSA, 50 mmol l−1 H2O2, 100 mmol l−1 acetate buffer of pH 5.0 ± 0.05 and at 40 °C. Addition of 200 μg ml−1 diethylenetriaminepentaacetic acid (DTPA) conferred high selectivity for the proposed method. Following the recommended procedure, Mo(VI) could be determined with a linear calibration graph up to 2.5 ng ml−1 and a detection limit, based on the 3Sb-criterion, of 0.027 ng ml−1. The unique sensitivity and selectivity of the implemented method allowed its direct application to the determination of Mo(VI) in natural and industrial waste water. The method was validated by comparison with the standard ETAAS method. Moreover, published catalytic-spectrophotometric methods for the determination of molybdenum were reviewed. 相似文献
9.
Surendra Prasad 《Analytica chimica acta》2005,540(1):173-180
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−, ∈ = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples. 相似文献
10.
A rapid, simple, selective and sensitive method for the spectrophotometric determination of nitrite in water has been developed and optimum reaction conditions along with other analytical parameters have been evaluated. Nitrite reacts with barbituric acid in acidic solution to give the nitroso derivative, violuric acid. At analytical wavelength of 310 nm, Beer's law is obeyed over the concentration range 0.00–3.22 ppm of nitrite. The molar absorptivity is 15330 ± 259.7 (95%) with pooled standard deviation of 355.57 and R.S.D. of 2.32%. As well as the method is sensitive (2.99 × 10−3 μg NO2 cm−2) and selective, it tolerates most of the potential interferents. It has been successfully applied to nitrite determination in natural waters by use of a calibration graph with determination limit of 1.66 μg NO2 in 100 mL working solution corresponding to minimum 9.5 ppb NO2–N in water samples. Lower concentrations of nitrite (3.0 μg NO2/L sample) is precisely analyzed by using the method of dilution with sample, with R.S.D. of lower than 0.5%. The results were compared with standard N-(1-naphtyl)ethylenediamine dihydrochloride method and very good agreement between the data was observed. The method can easily be applied in the field. 相似文献
11.
催化动力学光度法测定铬的研究 总被引:1,自引:0,他引:1
在稀HCl介质中,微量铬(Ⅲ)对K2S2O8氧化酸性大红GR的褪色反应有明显的催化作用。据此建立了催化动力学光度法测定微量铬(Ⅲ)的新方法。确定了反应的最佳条件,并讨论了动力学参数。方法线性范围为0.008~0.4mg/L,检出限为2.96×10-6g/L。方法已用于自来水、钢厂废水、污水中微量铬(Ⅲ)的测定。 相似文献
12.
Ahmed T. Mubarak Ashraf A. Mohamed Khalid F. Fawy Ayed S. Al-Shihry 《Mikrochimica acta》2007,157(1-2):99-105
An extremely sensitive and selective kinetic method was developed for the determination of trace levels of nitrite based on
its catalytic effect on the oxidation of perphenazine (PPZ) with bromate in a phosphoric acid medium. The reaction rate was
monitored spectrophotometrically by tracing the formation of the red-colored oxidized product of PPZ at 525 nm within 30 sec
of mixing. The optimum reaction conditions were 4.0 μmol L−1 PPZ, 0.4 mol L−1 H3PO4 and 30 mmol L−1 bromate at 25 °C. Using the recommended procedure, nitrite could be determined with a linear calibration graph up to 4.50 ng mL−1 and a detection limit of 0.07 ng mL−1. The method was conveniently applied to the determination of nitrite in samples of rain, polluted well and formulated waste
waters. Moreover, the published kinetic spectrophotometric methods for nitrite determination are reviewed. 相似文献
13.
Fluorimetric determination of bromate by ion-exchange separation and post-column derivatization 总被引:1,自引:0,他引:1
For the determination of bromate in drinking water a stopped-flow post-column reaction was developed following the separation of bromate from the matrix by an anion-exchange column. In the post-column reaction the analyte was used to oxidize the azo dye sulfonaphtholazoresorcinol, SNAR, and the residual amount was converted into a fluorescent binuclear complex by an excess of gallium ions. The fluorescence was monitored at 585 nm, with a maximum excitation wavelength at 521 nm. The determination of bromate is based on the decrease of the fluorescence intensity with increasing bromate concentration. The given hydrodynamic parameters and the condition of equal flow rates of the two branch streams at each T-piece have to be considered as an important criterion for the experimental set-up. The volume flows and the concentrations required for the reagent solutions in the influent of each T-piece were determined as a result of batch experiments and theoretical considerations. The limit of detection was 0.28 g L–1bromate for the flow method, which shows linearity up to 15 gL–1 bromate. 相似文献
14.
A highly sensitive catalytic quenching spectrofluorimetric method was described for the determination of V(V) based on its catalytic effect on the oxidation of 1,8-diaminonaphthalene by potassium bromate with Tiron as an activator in weakly acidic medium and the reaction mechanism was investigated. The reaction was followed spectrofluorimetrically by measuring the fluorescence intensity of 1,8-diaminonathphlene (DAN) (λex=356 nm, λem=439 nm) at a fixed time of 5 min from initiation of the reaction. Under the optimum conditions, vanadium(V) can be determined in the range 0.05-50.0 ng ml−1 with a S.D.=0.024 for 15 times measurements. The detection limit of the method was down to 0.0088 ng ml−1 and the catalytic reaction activation energy was found to be 43.92 kJ mol−1. The proposed method was tested for the determination of vanadium(V) in rice and natural water samples. 相似文献
15.
In this work, a new, simple and sensitive flow injection catalytic kinetic spectrophotometric determination of nitrite is reported based on catalytic effect of nitrite on the redox reaction between sulfonazo III and potassium bromate in acidic media. The reaction was monitored by measuring the decrease in the absorbance of sulfunazo III at 570 nm. Various chemical (such as the effect of acidity, reagents concentrations) and instrumental parameters (flow rate, reaction coil length, injection volume and temperature) were studied and were optimized. Under the optimum conditions calibration graph was linear in the nitrite concentration ranges of 8.00 × 10−3-3.00 × 10−1 μg/ml (with slope of 2.40) and 3.50 × 10−1-1.80 μg/ml (with slope of 0.42). The detection limit was 6.00 × 10−3 μg/ml of nitrite, the relative standard deviation (n = 10) was 1.25% and 0.88% for 5.00 × 10−2 and 2.00 × 10−1 μg/ml of nitrite respectively. About 60 samples in 1 h can be analyzed. The interfering effects of various chemical species were studied. The method was successfully applied in the determination of nitrite in food and environmental samples. 相似文献
16.
17.
18.
19.
D. A. Kostić G. Ž. Miletić S. S. Mitić I. D. Rašić V. V. Živanović 《Chemical Papers》2007,61(2):73-76
The complexation process of the transition metal Cu(II) with quercetin was studied. The investigation was conducted spectrophotometrically
in ethanol at the maximum absorption wavelength of 458.5 nm. Cu(II)—quercetin complex composition (1: 1) was determined using
the Job, Harvey—Manning, and mole ratio methods. Complex stability constant was calculated by the Job and mole ratio methods
and the respective logarithm values were 7.53 ± 0.25 and 7.44 ± 0.03. A new method for quantitative determination of the quercetin
content in solution was developed in this work. At the optimal conditions quercetin was determined in concentrations ranging
from 0.202 to 1.006 μg cm−3 with relative standard error of 2.5 % to 5.5 %. The lower detection limit was 0.067 μg cm−3. The method was found very accurate, reproducible, and sensitive, capable to determine microamounts of quercetin in pharmaceutical
preparations. 相似文献
20.
A catalytic spectrophotometric method for the determination of trace amounts of nitrite is proposed. In acidic solution, chlorpromazine (CP) is oxidized by nitric acid to form a red compound, which is further oxidized to a colorless compound. The reaction is accelerated by trace amounts of nitrite and can be followed by measuring the absorbance at 525 nm: nitrite ion is regenerated and multiplied by nitric acid. The absorbance of the reaction increased with an increase in the reaction time, reached a maximum and decreased rapidly. Since the time required for the absorbance to reach the maximum decreased with increasing nitrite concentration, this value was used as the measured parameter for the nitrite determination. Under the optimum experimental conditions (2.3 M nitric acid, 1.2 x 10(-5) M CP, 40 degrees C), nitrite can be determined in the range 0-100 microg l(-1). The relative standard deviations (n = 6) are 4.7 and 1.8% for 40 and 100 microg l(-1) nitrite, respectively. The detection limit of this method (3sigma) is 1.2 microg l(-1). This method was successfully applied to a determination of nitrite in natural water samples. 相似文献