共查询到20条相似文献,搜索用时 0 毫秒
1.
Haiges R Boatz JA Schroer T Yousufuddin M Christe KO 《Angewandte Chemie (International ed. in English)》2006,45(29):4830-4835
2.
3.
Coordination Adducts of Niobium(V) and Tantalum(V) Azide M(N3)5 (M=Nb,Ta) with Nitrogen Donor Ligands and their Self‐Ionization 下载免费PDF全文
Prof. Dr. Ralf Haiges Piyush Deokar Prof. Dr. Karl O. Christe 《Angewandte Chemie (International ed. in English)》2014,53(21):5431-5434
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6]?, [M(N3)4(2,2′‐bipy)2]+[M(N3)6]? and [M(N3)4(1,10‐phen)2]+[M(N3)6]? were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2?L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed. 相似文献
4.
The transparent dark orange compounds Cs2[Pd(N3)4] and Rb2[Pd(N3)4]·2/3H2O are synthesized by reaction of the respective binary alkali metal azides with K2PdCl4 in aqueous solutions. According to single‐crystal X‐ray diffraction investigations, the novel ternary azidopalladates(II) crystallize in the monoclinic space group P21/c (no. 14) with a = 705.7(2) pm, b = 717.3(2) pm, c = 1125.2(5) pm, β = 104.58(2)°, mP30 for Cs2[Pd(N3)4] and a = 1041.4(1) pm, b = 1292.9(2) pm, c = 1198.7(1) pm, β = 91.93(1)°, mP102 for Rb2[Pd(N3)4]·2/3H2O, respectively. Predominant structural features of both compounds are discrete [PdII(N3)4]2– anions with palladium in a planar coordination by nitrogen, but differing in point group symmetries., The vibrational spectra of the compounds are analyzed based on the idealized point group C4h of the spectroscopically relevant unit, [Pd(N3)4]2– taking into account the site symmetry splitting due to the symmetry reduction in the solid phase. 相似文献
5.
6.
Prof. Dr. Ralf Haiges Monica Vasiliu Prof. Dr. David A. Dixon Prof. Dr. Karl O. Christe 《Angewandte Chemie (International ed. in English)》2015,54(31):9101-9105
Vanadium(V) oxoazide [VO(N3)3] was prepared through a fluoride–azide exchange reaction between [VOF3] and Me3SiN3 in acetonitrile solution. When the highly impact‐ and friction‐sensitive compound [VO(N3)3] was reacted with 2,2′‐bipyridine, the adduct [(bipy)VO(N3)3] was isolated. The reaction of [VO(N3)3] with [PPh4]N3 resulted in the formation and isolation of the salt [PPh4]2[VO(N3)5]. The adduct [(bipy)VO(N3)3] and the salt [PPh4]23[VO(N3)5] were characterized by vibrational spectroscopy and single‐crystal X‐ray structure determination, making these compounds the first structurally characterized vanadium(V) azides. 相似文献
7.
8.
Dr. Antoine Demont Dr. Carmelo Prestipino Dr. Olivier Hernandez Dr. Erik Elkaïm Serge Paofai Prof. Nikolaï Naumov Dr. Bruno Fontaine Prof. Régis Gautier Dr. Stéphane Cordier 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(38):12711-12719
The crystal structure of Cs2BaTa6Br15O3 has been elucidated by using synchrotron X‐ray powder diffraction and absorption experiments. It is built from edge‐bridged octahedral [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]4? cluster units with a singular poor metallic electron (ME) count equal to thirteen. This leads to a paramagnetic behaviour related to one unpaired electron. The arrangement of the Ta6 clusters is similar to that of Cs2LaTa6Br15O3 exhibiting 14‐MEs per [(Ta6${{\rm Br}{{{\rm i}\hfill \atop 9\hfill}}}$ ${{\rm O}{{{\rm i}\hfill \atop 3\hfill}}}$ )${{\rm Br}{{{\rm a}\hfill \atop 6\hfill}}}$ ]5? motif. The poorer electron‐count cluster presents longer metal–metal distances as foreseen according to the electronic structure of edge‐bridged hexanuclear cluster. Density functional theory (DFT) calculations on molecular models were used to rationalise the structural properties of 13‐ and 14‐ME clusters. Periodic DFT calculations demonstrate that the electronic structure of these solid‐state compounds is related to those of the discrete octahedral units. Oxygen–barium interactions seem to prevent the geometry of the octahedral cluster to strongly distort, allowing stabilisation of this unprecedented electron‐poor Ta6 cluster in the solid state. 相似文献
9.
Fernández I Martínez-Viviente E Breher F Pregosin PS 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(5):1495-1506
7Li, 31P, and 1H variable-temperature pulsed gradient spin-echo (PGSE) diffusion methods have been used to study ion pairing and aggregation states for a range of lithium salts such as lithium halides, lithium carbanions, and a lithium amide in THF solutions. For trityllithium (2) and fluorenyllithium (9), it is shown that ion pairing is favored at 299 K but the ions are well separated at 155 K. For 2-lithio-1,3-dithiane (13) and lithium hexamethyldisilazane (LiHMDS 16), low-temperature data show that the ions remain together. For the dithio anion 13, a mononuclear species has been established, whereas for the lithium amide 16, the PGSE results allow two different aggregation states to be readily recognized. For the lithium halides LiX (X = Br, Cl, I) in THF, the 7Li PGSE data show that all three salts can be described as well-separated ions at ambient temperature. The solid state structure of trityllithium (2) is described and reveals a solvent-separated ion pair formed by a [Li(thf)4]+ ion and a bare triphenylmethide anion. 相似文献
10.
11.
Sophia J. Makowski Daniel Gunzelmann Jürgen Senker Wolfgang Schnick Prof. Dr 《无机化学与普通化学杂志》2009,635(15):2434-2439
Calcium hydrogenmelonate heptahydrate Ca[HC6N7(NCN)3] · 7H2O was obtained by metathesis reaction in aqueous solution. The structure of the molecular salt was elucidated by single‐crystal X‐ray diffraction. The crystal structure consists of alternating layers of planar monopronated melonate ions, Ca2+ and crystal water molecules. The anions of adjacent layers are staggered so that no π–π stacking occurs. The melonate entities are interconnected by hydrogen bonds within and between the layers. Ca[HC6N7(NCN)3] · 7H2O was investigated by solid‐state NMR and FTIR spectroscopy, TG and DTA measurements. 相似文献
12.
Yuan Z Entwistle CD Collings JC Albesa-Jové D Batsanov AS Howard JA Taylor NJ Kaiser HM Kaufmann DE Poon SY Wong WY Jardin C Fathallah S Boucekkine A Halet JF Marder TB 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(10):2758-2771
The (p-R-phenyl)dimesitylboranes (R=Me(2)N, MeO, MeS, Br, I), (p-R-phenylethynyl)dimesitylboranes (R=Me(2)N, MeO, MeS, H), (E)-[2-(p-R-phenyl)ethenyl]dimesitylboranes (R=Me(2)N, H(2)N, MeO, MeS, H, CN, NO(2)), (E)-[2-(2-thienyl)ethenyl]dimesitylborane, and (E)-[2-(o-carboranyl)ethenyl]dimesitylborane have been prepared through the reaction of the appropriate p-R-phenyl- and p-R-phenylethynyllithium reagents with dimesitylboron fluoride and by hydroboration of the appropriate p-R-phenylacetylene, 2-ethynylthiophene, and o-ethynylcarborane with dimesitylborane. Their UV/Vis absorption and emission spectra have been recorded in a range of solvents with the fluorescence maxima of the donor-substituted compounds in particular exhibiting large bathochromic shifts in highly polar solvents, indicative of charge transfer leading to large dipole moments in the excited state. The molecular structures of the (p-R-phenyl)dimesitylboranes (R=Me(2)N, MeO, MeS, Br, I), the (E)-[2-(p-R-phenyl)ethenyl]dimesitylboranes (R=Me(2)N, H(2)N MeO, MeS, H), (p-R-phenylethynyl)dimesitylborane (R=Me(2)N), and (E)-[2-(2-thienyl)ethenyl]dimesitylborane, which have been determined from single-crystal X-ray diffraction measurements, offer evidence of increased conjugation in the ground state with increased donor strength of the R substituent. Their first- and second-order molecular hyperpolarizabilities have been obtained from EFISH and THG measurements, the first-order hyperpolarizabilities being largest for the strongest R-substituent donors. AM1 calculations have been performed on these compounds, showing reasonable agreement with the experimentally obtained bond lengths and hyperpolarizabilities, as well as on several related hypothetical compounds containing multiple C==C bonds, most of which are proposed to have even larger hyperpolarizabilities. 相似文献
13.
NaSc3[HPO3]2[HPO2(OH)]6 was prepared by use of a phosphorus acid flux route. The crystal structure was determined from single‐crystal X‐ray diffraction data: triclinic, space group P$\bar{1}$ (No. 2), a = 7.4507(11) Å, b = 9.6253(17) Å, c = 9.6141(16) Å, α = 115.798(4)°, β = 101.395(4)°, γ = 101.136(3)°, V = 577.29(16) Å3 and Z = 1. The crystal structure of NaSc3[HPO3]2[HPO2(OH)]6 contains two kinds of phosphate(III) groups: HPO32– and HPO2(OH)–. Phosphate(III)‐tetrahedra, NaO6 and ScO6 octahedra together form a (3,6)‐connected net. During heating hydrogen and water are released and Sc[PO3]3 is formed as the main crystalline decomposition product. 相似文献
14.
Although potassium, rubidium, and cesium uranyl nitrate have been characterized a long time ago, the crystal structure and properties of the homologous sodium compounds has not been reported yet. Na[UO2(NO3)3] crystallizes in a unique structure [Pearson code cP72, cubic, P213, no. 198, Z = 4, a = 10.6324(14) Å, 938 unique reflections with Io > 2σ(Io), R1 = 0.0379, wR2 = 0.0947, GooF = 1.092, T = 293 K]. The structure is characterized by an open framework built by interconnected helical chains formed by {UO8} and {NaO6} units. The vibrational and optical (UV/Vis absorption and luminescence) spectra match well with those of the higher alkali metal uranyl nitrates. 相似文献
15.
Dr. Marek Daszkiewicz Mariusz K. Marchewka Iryna Typilo Lubomir D. Gulay Dariya Semenyshyn 《无机化学与普通化学杂志》2011,637(10):1409-1413
The crystal structure of distrontium octacyanotungstate decahydrate, Sr2[W(CN)8] · 10H2O, was solved using X‐ray single crystal diffraction. The tungsten atom lies on a two fold axis. Eight cyanide anions create tetragonal antiprismatic coordination sphere of tungsten atom. The two edge‐sharing tetragonal antiprisms of [Sr(NC)3(OH2)5], create a dimer, [Sr2(CN)6(H2O)6(μ‐H2O)2], which lies on the inversion center. One symmetry independent water molecule is located in a void of 40 Å3. Vibrational (FT‐IR and FT‐Raman spectroscopic) behavior of main structural units is discussed. It was spectroscopically confirmed that the geometry of [W(CN)8]4– anion is slightly distorted from that corresponding to “free” anion. The number of observed bands is significantly lower than that expected for C2 point group. 相似文献
16.
《无机化学与普通化学杂志》2018,644(15):816-820
Dimethylsulfone reacts in the binary superacidic systems XF/MF5 (X = H, D; M = As, Sb) under the formation of the corresponding salts of the type [(CH3)2SO(OX)]+[MF6]–. The salts are characterized by low temperature vibrational spectroscopy. In case of [(CH3)2SO(OH)]+[SbF6]– a single‐crystal X‐ray structure analysis is reported. The salt crystallizes in the orthorhombic space group Pbca with eight formula units per unit cell [a = 10.3281(3) Å, b = 12.2111(4) Å, c = 13.9593(4) Å]. The experimental results are discussed together with quantum chemical calculations on the PBE1PBE/6‐311G++(3pd,3df) level of theory. 相似文献
17.
Tetra(N‐methylimidazole)‐beryllium‐di‐iodide, [Be(Me‐Im)4]I2 ( 1 ), was prepared from beryllium powder and iodine in N‐methylimidazole suspension to give yellow single crystal plates, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes tetragonally in the space group I 2d with four formula units per unit cell. Lattice dimensions at 100(2) K: a = b = 1784.9(1), c = 696.2(1) pm, R1 = 0.0238. The structure consists of homoleptic dications [Be(Me‐Im)4]2+ with short Be–N distances of 170.3(3) pm and iodide ions with weak interionic C–H ··· I contacts. Experiments to yield crystalline products from reactions of N‐methylimidazole with BeCl2 and (Ph4P)2[Be2Cl6], respectively, in dichloromethane solutions were unsuccessful. However, single crystals of [Be3(μ‐OH)3(Me‐Im)6]Cl3 ( 2 ) were obtained from these solutions in the presence of moisture air. According to X‐ray diffraction studies, two different crystal individuals ( 2a and 2b ) result, depending on the starting materials BeCl2 and (Ph4P)2[Be2Cl6], respectively [ 2a : Space group P21/n, Z = 4; 2b : Space group P , Z = 2]. As a side‐product from the reaction of N‐methylimidazole with (Ph4P)2[Be2Cl6] single crystals of (Ph4P)Cl·CH2Cl2 ( 3 ) were identified crystallographically (P21/n, Z = 4) which are isotypical with the corresponding known bromide (Ph4P)Br·CH2Cl2. 相似文献
18.
Tetramethyl Ammonium Amalgam, [N(CH3)4]Hg8 Crystals of tetramethyl ammonium amalgam with the composition [N(CH3)4]Hg8 were prepared by electrolysis. According to temperature‐dependent X‐ray diffraction experiments the compound transforms into an amorphous product above 6 °C; the decomposition is a multi‐stage process as shown by DTA experiments. X‐ray examinations of crystalline aggregates indicate a structure of low symmetry with remarkable similarities to that of α‐Hg. 相似文献
19.
Single crystals of [Yb(NCS)3(H2O)5] · H2O were synthesized from a salt‐metathesis reaction between stoichiometric amounts of aqueous solutions of Yb2(SO4)3 · 8H2O and Ba(NCS)2 · 3H2O driven by the precipitation of Ba(SO4), followed by isothermic evaporation of the filtered‐off solution at room temperature under atmospheric conditions. These crystals of the title compound came as transparent, colorless and hygroscopic needles. According to the X‐ray diffraction structure analysis [Yb(NCS)3(H2O)5] · H2O crystallizes in the monoclinic space group P21 with the lattice parameters a = 845.38(5), b = 719.26(4), c = 1219.65(7) pm, β = 103.852(3)° for Z = 2. The acentric crystal structure contains crystallographically unique Yb3+ cations, each surrounded by three thiocyanate anions, all grafting with their nitrogen atoms, and five water molecules forming a neutral [Yb(NCS)3(H2O)5] complex with square antiprismatic shape, completed by a sixth interstitial water molecule. ATR‐FT infrared and single‐crystal Raman spectra of [Yb(NCS)3(H2O)5] · H2O confirm these findings. 相似文献
20.
The reaction of Ph3SnCl, (R4N)2[Mo6O19] and (R4N)OH in a molar ratio of 6:1:10 leads to the formation of (R4N)[(Ph3Sn)MoO4] (R = nPr ( 1 ), nBu ( 2 )). Compounds 1· CH3CN and 2 have been charactarized by IR spectroscopy and single crystal X‐ray diffraction. 1· CH3CN forms orthorhombic crystals, space group P212121 with a = 1339.9(2), b = 1508.9(2), c = 1733.2(3) pm. 2 crystallizes in the monoclinic space group P21 with a = 1342.6(2), b = 2280.3(4), c = 1344.0(2) pm, β = 118.34(1). Both compounds 1 and 2 consist of isolated R4N+ cations and polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4]– chains with an alternating arrangement of Ph3Sn+ and MoO42– groups. Treatment of (Ph3Sn)2MoO4 with bis(ethylenediamine)copper(II) succinate yields [Cu(en)2(Ph3Sn)2(MoO4)2] ( 3 ). The zinc derivative [Zn(en)2(Ph3Sn)2(MoO4)2] ( 4 ) is obtained similarly by reaction of (Ph3Sn)2MoO4 with bis(ethylenediamine)zinc(II) formiate. Compounds 3· 2DMF · EtOH and 4· 2DMF · EtOH crystallize in the monoclinic space group P21/n with a = 1998.0(2), b = 1313.3(1), c = 2181.6(2) pm, β = 90.97(1)° for 3 and a = 2015.4(1), b = 1316.7(1), c = 2157.0(1) pm, β = 90.40(1)° for 4 . Like in the cases of 1 and 2, polymeric $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4]– chains are observed. The [M(en)2]2+ units (M = Cu, Zn) act as linkers between the $\rm^{1}_{\infty}$ [(Ph3Sn)MoO4]– chains to give 2D layer structures with (6, 3) net topology. 相似文献