首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We consider general infinite nanotubes of atoms in ${\mathbb{R}^3}$ where each atom interacts with all the others through a two-body potential. At the equilibrium, the positions of the atoms satisfy a Euler–Lagrange equation. When there are no exterior forces and for a suitable geometry, a particular family of nanotubes is the set of perfect nanotubes at the equilibrium. When exterior forces are applied on the nanotube, we compare the nanotube to nanotubes of the previous family. In part I of the paper, this quantitative comparison is formulated in our first main result as a discrete Saint-Venant principle. As a corollary, we also give a Liouville classification result. Our Saint-Venant principle can be derived for a large class of potentials (including the Lennard-Jones potential), when the perfect nanotubes at the equilibrium are stable. The approach is designed to be applicable to nanotubes that can have general shapes like, for instance, carbon nanotubes or DNA, under the oversimplified assumption that all the atoms are identical. In part II of the paper, we derive from our Saint-Venant principle a macroscopic mechanical model for general nanotubes. We prove that every solution is well approximated by the solution of a continuum model involving stretching and twisting, but no bending. We establish error estimates between the discrete and the continuous solution. More precisely we give two error estimates: one at the microscopic level and one at the macroscopic level.  相似文献   

3.
A continuum theory for the chemical vapor deposition of thin solid films is proposed, in which a flowing, chemically reacting, gaseous mixture is coupled to the bulk of a growing thin film via the equations that govern the morphological evolution of the interface separating them. The vapor-film interface is viewed as a surface of zero thickness capable of sustaining mass and endowed with thermodynamic variables that account for its distinct structure. We consider situations in which species diffusion and heat conduction occur in all three phases (vapor, bulk and surface), with the former mechanism augmented by the convective transport of particles in the gas. Special attention is given to the chemical reactions that occur both in the vapor and on the film surface. Ours is a conceptual framework based on conservation laws for chemical species, momentum and energy, together with a separate balance of configurational forces. These balances are supplemented by an appropriate version of the second law which is used to develop suitable constitutive relations for each of the phases. In particular, we investigate the case of an elastic film, deposited on a rigid substrate and in contact with a reacting, multispecies, ideal vapor, whose surface behaves like an anisotropic, chemically reactive, multicomponent, ideal lattice gas. In addition to recovering the standard equations that describe the behavior of the gas and film phases, we derive the coupled PDE's that govern the interfacial morphological, chemical, and thermal evolution. In particular, the constitutively augmented interfacial configurational force balance provides a “kinetic relation” linking the thermodynamic “driving force” at the film surface to the growth rate. The special cases of (i) negligible interfacial species densities, and (ii) local (mechanical) equilibrium of both multi- and single-species films are investigated.  相似文献   

4.
We consider a simplified version of the micromagnetic energy for ferromagnetic samples in the shape of thin films. We study (a) stationary, stable critical points, and (b) solutions of the corresponding Landau-Lifshitz equation under a stability condition. We determine the asymptotic behaviour of solutions of these variational problems in the thin film limit. A characteristic property of the limit is the development of Ginzburg-Landau-type vortices at the boundary.  相似文献   

5.
作者在普通X-射线衍射仪上实施了样品倾斜X-射线衍射(STD)技术,不需要专用薄膜附件(TFA)也能很好地进行薄膜结构的测定,并且给出其衍射能量方程和方位角方程,从而使理论、实验和结构解析结合为一体。目前,应用该技术已经成功地解决了一些其它简便方法所无法解决的诸如物相纵向分布变化测量等问题。本文还通过几种摩擦学用膜的测定结果阐明了该技术的应用及功能。  相似文献   

6.
Of interest in this work are nematic continua that exhibit electromechanical coupling. The first part of this paper presents a novel variational formulation with a potential energy depending on four independent variables (the displacement, director, specific polarization and electric displacement perturbation). Variations of the potential energy with respect to each one of these variables lead to the governing mechanical equilibrium and constitutive relations plus Maxwell’s equations.The proposed variational formulation is next applied to the study of bifurcation of an infinite layer of a nematic liquid crystal confined between two parallel plates and subjected to a uniform electric field perpendicular to these plates under full anchoring boundary conditions. As the electric field exceeds a critical value, the nematic directors which are initially parallel to the plates, rotate and tend to align with the electric field orientation. This phenomenon, termed in the literature as Freedericksz transition, is treated here as a bifurcation problem using a fully 2D formulation. It is shown that the solution corresponding to the lowest applied electric field, also termed the critical load, is uniform in the direction parallel to the plates and that the corresponding bifurcated path is stable near this critical load. This result holds for arbitrary positive constants of the Frank-Oseen energy (and values of electric susceptibility constants that allow bifurcation) and justifies the 1D treatment of the Freedericksz transition in 2D settings that is widely adopted in the liquid crystal literature. An asymptotic analysis of the supercritical, stable bifurcated equilibrium path about the critical load is also presented and compared with the exact bifurcated solution.  相似文献   

7.
The aim of this paper is to study the existence of a classical solution for the waterbag model with a continuum of waterbags, which can been viewed as an infinite dimensional system of first-order conservation laws. The waterbag model, which constitutes a special class of exact weak solution of the Vlasov equation, is well known in plasma physics, and its applications in gyrokinetic theory and laser–plasma interaction are very promising. The proof of the existence of a continuum of regular waterbags relies on a generalized definition of hyperbolicity for an integrodifferential hyperbolic system of equations, some results in singular integral operators theory and harmonic analysis, Riemann–Hilbert boundary value problems and energy estimates.  相似文献   

8.
An out-of-plane linear coefficient of thermal expansion (CTE) measurement method was developed to overcome the difficulty in measuring the in-plane deformation of freestanding thin films with a thickness of less than 1 μm. The out-of-plane profile measurement was relatively easy with the added advantage of simplicity, easy specimen preparation, and a simple test setup. White light interferometry was used for determining the out-of-plane thermal deformation as a function of temperature. Two types of supporting substrates, silicon and ZERODUR®, were used to account for the substrate effect on the CTE measurement. Attempts were made to fit the measured profiles using several peak functions and then find the optimal one. The test procedures were demonstrated using a freestanding 530-nm-thick aluminum film that was used in a previous in-plane measurement method. The calculated CTE value of this aluminum film was 23.7 ppm/°C, which was in good agreement with the in-plane measurement result. The out-of-plane CTE measurement method incorporating a zero CTE substrate was shown to be the most convenient and straightforward method.  相似文献   

9.
We describe an asymptotic model for the behavior of PET-like heat-shrinkable thin films that includes both membrane and bending energies when the thickness of the film is positive. We compare the model to Koiter’s shell model and to models in which a membrane energy or a bending energy are obtained by Γ-convergence techniques. We also provide computational results for various temperature distributions applied to the films.  相似文献   

10.
本文采用白光散斑和数字散斑两种方法测量了厚度在1-60μm)之间康铜孤立膜和其上喷镀TiO2后复合膜的应力应变曲线,并成功地利用一种新方法-复合材料分离法由孤立膜和复合膜应力应变曲线分离出TiO2膜的应力应变曲线,同时给出了它们的基本力学性能(如(e,qs,qs,K)测量结果表明这一方法对于微电子及其组件中常用的薄膜(1-60μm)及超薄膜(0.1-1μm)的应力应变和基本力学性能的测量有普遍意义  相似文献   

11.
We examine the asymptotic behavior of a bilayer thin film using the notion of Γ-convergence. We allow for debonding at the interface, but penalize it using an interfacial energy; thus the functional we consider consists of the elastic energy of the two layers and the interfacial energy with penalized debonding. We show that the asymptotic theory or Γ-limit depends on the particular form of the interfacial energy, and derive detailed results for both the cohesive and the brittle interface.  相似文献   

12.
复合型紊流润滑理论模式的研究   总被引:2,自引:1,他引:2  
对复合型紊流润滑理论模式和国际上通用的几种紊流润滑理论模式进行比较研究,针对纯Couette流动和兼有压力梯度与剪切运动的复杂流动2种流场,用各种紊流润滑模式进行计算分析,并与不同雷诺数下时均速度的现有试验数据对比,研究表明:与其它紊流模式比较,复合型紊流润滑模式能准确分析不同工况的流场,与试验数据最为吻合;在低雷诺数下,复合型紊流模式由于理论基础的坚实性,仍能很好地适用,当用于既有高雷诺数又有低  相似文献   

13.
Instrumented indentation is a technique that can be used to measure the elastic properties of soft thin films supported on stiffer substrates, including polymer films, cellulosic sheets, and thin layers of biological materials. When measuring thin film properties using indentation, the effect of the substrate must be considered. Most existing models for determining the properties of thin films from indentation measurements were developed for metal and dielectric films bonded to semiconductor substrates and have been applied to systems with film-substrate modulus ratios between 0.1 and 10. In the present work, flat punch indentation of a thin film either bonded to or in contact with a substrate is examined using finite element modeling. A broad range of film-substrate modulus ratios from 0.0001 to 1 are investigated. As the substrate is effectively rigid compared to the film when the film-substrate modulus ratio is less than 0.0001, the results are also useful for understanding systems with lower film-substrate modulus ratios. The effects of the contact radius, film thickness, elastic properties, and friction between the film and the substrate on the measured stiffness were quantified using finite element modeling in order to understand how the elastic properties of the film can be extracted from indentation measurements. A semi-analytical model was developed to describe the finite element modeling results and facilitate the use of the results to analyze experimental measurements. The model was validated through analysis of indentation measurements of thin polyethylene sheets that were supported on substrates of various stiffness.  相似文献   

14.
15.
The present paper reports and rationalizes the use of Continuum Damage Mechanics (CDM) to describe the Mullins effect in elastomers. Thermodynamics of rubber-like hyperelastic materials with isotropic damage is considered. Since it is demonstrated that stress-softening is not strictly speaking a damage phenomenon, the limitations of the CDM approach are highlighted. Moreover, connections with two-network-based constitutive models proposed by other authors are exhibited through the choice of both the damage criterion and the measure of deformation. Experimental data are used to establish the evolution equation of the stress-softening variable, and the choice of the maximum deformation endured previously by the material as the damage criterion is revealed as questionable. Nevertheless, the present model agrees qualitatively well with experiments except to reproduce the strain-hardening phenomenon that takes place as reloading paths rejoin the primary loading path. Finally, the numerical implementation highlights the influence of loading paths on material response and thereby demonstrates the importance of considering the Mullins effect in industrial design.  相似文献   

16.
We develop a theoretical framework, for the diffusion of a single unconstrained species of atoms on a crystal lattice, that provides a generalization of the classical theories of atomic diffusion and diffusion-induced phase separation to account for constitutive nonlinearities, external forces, and the deformation of the lattice. In this framework, we regard atomic diffusion as a microscopic process described by two independent kinematic variables: (i) the atomic flux, which reckons the local motion of atoms relative to the motion of the underlying lattice, and (ii) the time-rate of the atomic density, which encompasses nonlocal interactions between migrating atoms and characterizes the kinematics of phase separation. We introduce generalized forces power-conjugate to each of these rates and require that these forces satisfy ancillary microbalances distinct from the conventional balance involving the forces that expend power over the rate at which the lattice deforms. A mechanical version of the second law, which takes the form of an energy imbalance accounting for all power expenditures (including those due to atomic diffusion and phase separation), is used to derive restrictions on constitutive equations. With these restrictions, the microbalance involving the forces conjugate to the atomic flux provides a generalization of the usual constitutive relation between the atomic flux and the gradient of the diffusion potential, a relation that in conjunction with the atomic balance yields a generalized Cahn–Hilliard equation.  相似文献   

17.
Freestanding MEMS structures made of two long connected beams from different materials are fabricated and released in order to extract the stress-strain properties of thin films. The first material, named actuator, contains a high internal tensile stress component and, when released, pulls on the other beam. The strain in the beams is calculated based on the measurement of the displacement with respect to the reference configuration using scanning electron microscopy. The stress is estimated using two different methods. The first method, already reported, is based on the displacement of the actuator and the knowledge of its internal stress. The method which constitutes the novelty of the present study is based on the dynamic analysis of the multi-beam structures, and the determination of the stress value that corresponds to the measured resonance frequencies. The dynamic analysis is performed via two different methods: (i) the modified Rayleigh–Ritz technique and (ii) the Euler–Bernoulli beam dynamics. Results are provided for palladium thin films which deform plastically and for monocrystalline silicon thin films, exhibiting a purely elastic behavior. The results show the higher accuracy of the dynamic measurements for the estimation of the stress compared to the static method. The dynamic measurements also show that the Rayleigh–Ritz technique tends to give a higher bound for the resonance frequencies compared to the Euler–Bernoulli technique. This dynamic method extends the potential of this on-chip material testing technique which can also be adapted to stress controlled sensors applications.  相似文献   

18.
This paper presents the results of new microtensile tests conducted to investigate the mechanical properties of submicron-thick freestanding copper films. The method, used in this study, allows the observation of materials response under uniaxial tensile loads with measurements of stress at strain rates up to 5.5 × 10−4/s. It also facilitates tension–tension fatigue experiments under a variety of mean stress conditions at cyclic loading frequencies to 20 Hz. The sample processes involve fabrication of a supporting frame with springs and alignment beams all made of electroplated nickel. Electroplating took place on top of a previously deposited sample rather than creating a structure by subtractive fabrication. Tensile sample loading is applied using a piezoelectric actuator. Load was measured using a capacitance gap sensor with a novel mechanical coupling to the sample. Tension–tension fatigue experiments were carried out with feedback to give load control. Fatigue tests were conducted on sputter-deposited 500 and 900 nm copper films with grain sizes ∼50 nm. Fatigue life reached 105 cycles at low mean load, which decreased with an increase in the mean load. The results indicate decreasing plasticity with increasing mean load.  相似文献   

19.
In this paper, we develop a novel experimental apparatus, referred to as the resonant frequency device, and establish methodology to measure the fatigue properties of thin solid films. Arranging thin-film strips of our specimens into the mechanical setting of a cantilever beam and using state-of-the-art piezo actuators to generate oscillation at the clamp of the cantilever, we create a system suitable for studying the material properties of the cantilever, such as Young's modulus, fatigue and possibly, loss tangent. Deformation of the cantilever is our controlled variable in the present study, and measured with fiber-optic probes pointed at the specimen and at the piezo driver. Stress is calculated from relative deformation of the cantilever specimen with respect to the piezo actuator via a photograph of the cantilever under vibration with a curve fitting method. A LabView computer program is developed for the fatigue tests to accurately count number of cycles applied on the specimens, and a feedback mechanism is adopted to maintain displacement during the tests. Here, we present our experimental setup, procedure and theoretical models for material-property extraction. For small displacement, the two-dimensional Euler–Bernoulli beam theory is adopted. With large displacement, the system behaves as the Duffing oscillator due to geometrical nonlinearity. In addition, some experimental observations of the piezo actuators and fiber optics are reported. The method is applied to evaluate the fatigue properties of nanolayered copper-niobium composites and significant increase in the fatigue endurance limit compared to the constituent materials in the bulk form is noted.  相似文献   

20.
A generalized theory of stress and strain tensor measures in the classical continuum mechanics is discussed: the main axioms of the theory are proposed, the general formulas for new tensor measures are derived, arid an energy conjugate theorem is formulated to distinguish the complete Lagrangian class of measures. As a subclass, a simple Lagrangian class of energy conjugate measures of stresses and finite strains is constructed in which the families of holonomic and corotational measures are distinguished. The characteristics of holonomic and corotational measures are studied by comparing the tensor measures of the simple Lagrangian class with one another and with logarithmic measures. For the simple Lagrangian class and its families, their completeness and closure are shown with respect to the choice of a generating pair of energetically conjugate measures. The applications of the new tensor measures in modeling the properties of plasticity, viscoelasticity, and shape memory are mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号