首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Selective-area growth (SAG) of InGaN/GaN multiple quantum wells (MQWs) was performed by metalorganic vapor phase epitaxy (MOVPE). The layers of a blue light-emitting diode (LED), that includes five InGaN quantum wells, were grown on a patterned GaN template on a sapphire substrate. In order to elucidate the contribution of vapor-phase diffusion of group-III precursors to the in-plane modulation of luminescence wavelength, the width of a stripe selective growth area was 60 μm that is sufficiently larger than the typical surface diffusion length, with the mask width varied stepwise between 30 and 240 μm. The distribution of the luminescence wavelength from the MQWs was measured with cathode luminescence (CL) across the stripe growth area. The peak wavelength ranged between 420 and 500 nm. The peak shifted to longer wavelengths and became broader as the measured point approached to the mask edge. Such a shift in the peak wavelength exhibited parabolic profile in the growth area and the wider mask shifted the entire peak positions to longer wavelengths. These trends clearly indicate that the vapor-phase diffusion play a dominant role in the in-plane modulation of the luminescence wavelength in the SA-MOVPE of InGaN MQWs, when the size of a growth area and/or the mask width exceeds approximately 10 μm.  相似文献   

2.
Influence of Si doping on the optical and structural properties of InGaN epilayers with different Si concentrations was investigated in detail by means of high-resolution X-ray diffraction (HRXRD), scanning electron microscope (SEM), Cathodoluminescence (CL) and photoluminescence (PL). It was found that a small amount of Si doping in InGaN could enhance luminescence intensity, improve the crystal quality of InGaN and suppress the formation of V-defects in InGaN. Further investigation by CL showed that V-defects act as nonradiative center, which lower the luminescence efficiency of InGaN. Based on above-mentioned results, one possible mechanism of influence of Si doping on the formation of V-defects in InGaN was also proposed in this paper.  相似文献   

3.
GaN-based InGaN/GaN multiple quantum wells (MQWs) structure having a high-quality epilayer and coherent periodicity was grown by metalorganic chemical vapor deposition. After thermal annealing of InGaN/GaN MQWs, the increase in temperature and annealing time caused the intermixing between the barrier and the wells, which in turn caused a decrease in periodicity on the high-resolution X-ray diffraction patterns. Thereby, we confirmed that the structural performance of InGaN MQWs is successively degrading with increasing thermal annealing temperature. Especially, InGaN MQWs of the sample annealed at 950 °C were profoundly damaged. The cathodoluminescence (CL) measurement indicated that MQWs emission intensity decreases with increasing thermal annealing temperature. Thus, the integrated CL intensity ratio of InGaN MQWs to GaN dramatically decreased while thermal annealing temperatures increased. This result caused the intermixing in MQWs to deteriorate the active layer performance. Furthermore, the peak position of MQWs showed a tendency of the red shift after high thermal annealing. It is suggested that the annealing-induced red shift in MQWs is attributed to the reduction of the inhomogeneity of the In content in the MQWs leading to the reduction of the quantized energies. Consequently, it indicates that the high temperature and the long-time thermal annealing would be inevitably followed by the structural destruction of InGaN MQWs.  相似文献   

4.
Transmission electron microscopy (TEM), cathodoluminescence in the scanning electron microscope (SEM-CL) and photoluminescence (PL) studies were performed on a 30 nm GaN/2 nm In0.28Ga 0.72N/2 μm GaN/(0 0 0 1) sapphire single quantum well (SQW) sample. SEM-CL was performed at low temperatures ≈8 K, and at an optimum accelerating voltage, around 4–6 kV to maximise the quantum well (QW) luminescence. The CL in the vicinity of characteristic “V-shaped” pits was investigated. The near band edge (BE) luminescence maps from the GaN showed bright rings inside the boundaries of the pits while the QW luminescence maps showed pits to be regions of low intensity. These observations are consistent with TEM observations showing the absence of QW material in the pits. Variations in both the BE and QW maps in the regions between the pits are ascribed to threading edge dislocations. The CL and PL QW luminescence was observed to blue-shift and broaden with increasing excitation intensity. This was accompanied by decreasing spatial resolution in the CL QW maps implying an increasing carrier diffusion length in the InGaN layer. The reasons for this behaviour are discussed. It is argued that screening of the piezoelectric field in the material may account for these observations.  相似文献   

5.
InGaN/GaN multiple quantum well-based blue light emitting diodes (LEDs) with different spacer layer structures were grown by metalorganic chemical vapor deposition. Fast-Fourier-transformed high-resolution transmission electron microscopy was used to determine the influence of the strain status in the spacer layer on Mg distribution and device performance. A comparison of the (1 1¯ 0 0) planar distance showed that the high-temperature grown InGaN layer in the spacer had a high level of stored strain. This led to the formation of a continuous facet contrast induced by Mg segregation in the p-layer, which was responsible for the deterioration of the electroluminescence performance of the LEDs. These results show that the delicate control of stored strain in nitride films is important for improving the device performance.  相似文献   

6.
The thermal stability of ∼200-nm-thick InGaN thin films on GaN was investigated using isothermal and isochronal post-growth anneals. The InxGa1−xN films (x=0.08–0.18) were annealed in N2 at 600–1000 °C for 15–60 min, and the resulting film degradation was monitored using X-ray diffraction (XRD) and photoluminescence (PL) measurements. As expected, films with higher indium concentration showed more evidence for decomposition than the samples with lower indium concentration. Also for each alloy composition, decreases in the PL intensity were observed starting at much lower temperatures compared to decreases in the XRD intensity. This difference in sensitivity of the PL and XRD techniques to the InGaN decomposition suggest that defects that quench luminescence are generated prior to the onset of structural decomposition. For the higher indium concentration films, the bulk decomposition proceeds by forming metallic indium and gallium regions as observed by XRD. For the 18% indium concentration film, measurement of the temperature-dependent InGaN decomposition yields an activation energy, EA, of 0.87±0.07 eV, which is similar to the EA for bulk InN decomposition. The InGaN integrated XRD signal of the 18% film displays an exponential decrease vs. time, implying InGaN decomposition proceeds via a first-order reaction mechanism.  相似文献   

7.
Neodymium (Nd) doped lutetium gallium garnet (Nd:Lu3Ga5O12, Nd:LuGG) single crystal was successfully grown by the optical floating-zone method for the first time to our knowledge. Its absorption and luminescence spectra at room temperature were measured. By using the J–O theory, the spectral parameters of Nd:LuGG were calculated, which indicated that Nd:LuGG should possess comparable and even better laser properties than Nd:YAG. The maximum output power of 855 mW at 1062 nm was achieved with slope efficiency of 23.4% under a pump power of 5.2 W, and optical conversion efficiency of 16.4%. All the results show that Nd:LuGG is a potential laser material.  相似文献   

8.
The Dy3+: PWO single crystal was subsequently annealed in air atmosphere at a temperature of 500°C, 550°C, 600°C, 700°C, 800°C, 900°C, and 1000°C, respectively. X-ray excited luminescence spectra were measured before and after each step of annealing. Annealing experiments confirmed the energy transfer-taking place from PbWO4 (PWO) host to Dy3+ ions, followed by the enhancing characteristic emission of Dy3+ ions. In the process of annealing, the luminescence of PWO host was significantly reduced while that of Dy3+ was increased simultaneously. Annealing at a temperature below 700°C suppressed the blue luminescence of the PWO host and enhanced its green components, while the emission of Dy3+ is increased to some extent. Further annealing at higher temperature strongly reduced the luminescence of the PWO host, while the emission of Dy3+ was greatly increased. Interstitial oxygen Oi could play an important role in the luminescence. Annealing could modify the luminescence of Dy3+ ions in PWO, which may be useful in terms of some application purposes.  相似文献   

9.
GaN-based InGaN/GaN multi-quantum-well light emitting diode (MQW LED) structures were grown by metal organic chemical vapor deposition method. The optical properties of the LED structure have been investigated by using the photoluminescence and electroluminescence measurement. Both photoluminescence and electroluminescence results indicate that near pure InN clusters exist within the InGaN layers, which are responsible for the light emission in the LED. With increasing the Mg activation temperature of p-GaN layer, the optical properties of the LED structure tended to significantly degrade. This degradation was found to be deeply related to the variation of InN clusters in the active region. By the current–voltage measurement, a large forward voltage variation was observed. The voltage variation is caused to the conductivity variation of the p-GaN layer due to the different activation temperature. The turn-on voltage obtained from the best LED was 2.56 V and the forward voltage measured at 20 mA was 3.5 V. On the basis of these results, activation of the Mg-doped p-GaN layer must be carried out at the lowest possible value so as to obtain the better performance of LEDs.  相似文献   

10.
This study examined the influence of strain-compensated triple AlGaN/GaN/InGaN superlattice structures (SLs) in n-GaN on the structural, electrical and optical characteristics of LEDs by analyzing the etch pits density (EPD), stress measurement, high-resolution X-ray diffraction (HRXRD), sheet resistance, photoluminescence (PL) and light–current–voltage (LIV). EPD, stress measurement and HRXRD studies showed that the insertion of AlGaN/GaN/InGaN SLs during the growth of n-GaN effectively distributed and compensated for the strong compressive stress, and decreased the dislocation density in n-GaN. The operating voltage at 20 mA for the LEDs grown with SLs decreased to 3.18 V from 3.4 V for the LEDs grown without SLs. In addition, a decrease in the spectral blue shift compared to the LEDs grown without SLs was observed in the LEDs grown with the SLs.  相似文献   

11.
We have observed strong blue emission at room temperature from arsenic doped GaN samples grown by molecular beam epitaxy. Similar results were obtained for samples doped with both arsenic dimers and tetramers. The origin of this blue emission is discussed and a growth model proposed to account for our observations. We propose that arsenic doped GaN may be a suitable replacement for (InGa)N as the active region for blue light emitting devices.  相似文献   

12.
The structural, optical, and electrical properties of GaN films grown on silica glass substrate by metalorganic chemical vapor deposition were studied. X-ray diffraction showed that the films were grown in hexagonal structure with a predominant (0 0 0 2) peak. A broad and strong band-edge emission and very weak yellow luminescence in photoluminescence (PL) spectra were observed. And the temperature dependence of the PL spectra was extensively studied. The thermal quenching activation energy was found to be very close to the donor activation energy determined from the temperature dependence of the carrier concentration. Longitudinal optical phonons were found to be responsible for the PL broadening above 100 K.  相似文献   

13.
The dark-brown colored 5 at% Yb-doped YAlO3 (Yb:YAP) single crystal was grown successfully by temperature gradient technique (TGT) for the first time. The TGT-grown Yb:YAP crystal with the perovskite structure and excellent crystallization perfection were confirmed by the X-ray diffractions techniques. The dark-brown color of TGT-Yb:YAP crystal turned into the colorless after annealing in the air at 1200 °C for 10 h. The absorption spectra, LD-excited infrared emission and X-ray excited luminescence spectra of the air-annealed Yb:YAP single crystal were investigated at the room temperature. The results indicate that the TGT-Yb:YAP single crystals can be used for the laser and scintillation applications.  相似文献   

14.
Eu-doped GaN with various Eu concentrations were grown by gas source molecular beam epitaxy, and their structural and optical properties were investigated. With increasing Eu concentration from 0.1 to 2.2 at%, deterioration of the structural quality was observed by reflection high-energy electron diffraction, atomic force microscopy and X-ray diffraction. Such a deterioration may be caused by an enhancement of island growth and formation of dislocations. On the other hand, room temperature photoluminescence spectra showed red emission at 622 nm due to an intra-atomic f–f transition of Eu3+ ion and Fourier transform infrared spectra indicated an absorption peak at about 0.37 eV, which may be due to a deep defect level. The intensity of the red luminescence and the defect-related absorption peak increased with increasing Eu concentration, and a close correlation in the increasing behavior was observed between them. These results suggest that the deep defect level plays an important role in the radiative transition of Eu3+ ion in GaN and the optical process for the luminescence at 622 nm was discussed with relation to the defect.  相似文献   

15.
Sapphire and SiC are typical substrates used for GaN growth. However, they are non-native substrates and result in highly defective materials. The use of ZnO substrates can result in perfect lattice-matched conditions for 22% indium InGaN layers, which have been found to suppress phase separation compared to the same growths on sapphire. InGaN layers were grown on standard (0 0 0 2) GaN template/sapphire and (0 0 0 1) ZnO substrates by metalorganic chemical vapor deposition. These two substrates exhibited two distinct states of strain relaxation, which have direct effects on phase separation. InGaN with 32% indium exhibited phase separation when grown on sapphire. Sapphire samples were compared with corresponding growths on ZnO, which showed no evidence of phase separation with indium content as high as 43%. Additional studies in Si-doping of InGaN films also strongly induced phase separation in the films on sapphire compared with those on ZnO. High-resolution transmission electron microscopy results showed perfectly matched crystals at the GaN buffer/ZnO interface. This implied that InGaN with high indium content may stay completely strained on a thin GaN buffer. This method of lattice matching InGaN on ZnO offers a new approach to grow efficient emitters.  相似文献   

16.
InGaN/GaN multiple quantum well structures emitting in the blue/green wavelength region were grown by metal organic vapor phase epitaxy. By reducing the quantum well growth time the influence of the quantum well thicknesses between 3.8 and 1.1 nm on the indium incorporation and the distribution of indium in the quantum wells in growth direction were investigated. X-ray diffraction measurements show that the average indium mole fraction in the quantum wells decreases with reducing quantum well width due to a delay in the indium incorporation at the barrier/well interface. Quantitative analysis reveals a segregation length of about 2 nm as a measure of the graded region in growth direction. Cathodoluminescence imaging reveals that the spatial variation of the wavelength is reduced with decreasing quantum well thickness down to 1.7 nm. Reducing the width of the quantum well further results in an increase of the spatial wavelength variation.  相似文献   

17.
We prepared InGaN layers on GaN/sapphire substrates using rf-MBE. Photoluminescence (PL) from these layers, grown at different temperatures TS, shows that there is a strong tendency of GaN to form a separate phase as TS is increased from 600°C to 650°C. Concomitant with the phase separation, the PL from the InGaN phase broadens, which indicates that indium composition in this phase becomes increasingly non-uniform. Indium compositions measured by Rutherford backscattering (RBS) are consistent with these results. We also observed an increase in PL intensity for InGaN layers grown at higher temperatures. In this paper, we also report on preparing a top-contact InGaN/GaN light emitting diode. The device was operated at 447 nm and had the emission line width of 37 nm with no observable impurity related features. The turn-on voltage was 3.0 V. The output power was 20 μW at 60 mA drive current.  相似文献   

18.
InGaN height-controlled quantum dots (HCQDs) were grown by alternately depositing In0.4Ga0.6N QD and In0.1Ga0.9N spacer layers on a seed In0.4Ga0.6N QD layer. Structural and optical studies showed that the height of the InGaN QDs was controlled by the deposition cycle of In0.4Ga0.6N/In0.1Ga0.9N layers. Photoluminescence studies showed that the In0.4Ga0.6N HCQDs provided deep potential wells and the piezoelectric field-induced quantum-confined Stark effect was negligibly small. These phenomena are attributed to variation in quantum confinement energy in the electronically coupled InGaN HCQDs providing deep potential wells.  相似文献   

19.
Micro-pulling-down (μ-PD) growth apparatus was modified for fluoride crystals. PrF3 was grown with various concentrations of Ce3+ from 0–100%. The crystals were transparent and colorless (CeF3) or greenish and 3 mm in diameter and 15–50 mm in length. Neither visible inclusions nor cracks were observed. Radioluminescence spectra and decay kinetics were measured for the sample set at room temperature. In comparison to the Czochralski or Bridgman method, the μ-PD method allows to produce single crystalline material in a faster thus more economic way. Once it is established for the fluoride crystals, it is an efficient tool for exploring the field of new functional fluorides.  相似文献   

20.
We have studied the transition from As-doped GaN showing strong blue emission (2.6 eV) at room temperature to the formation of GaN1−xAsx alloys for films grown by plasma-assisted molecular beam epitaxy. We have demonstrated that with increasing N-to-Ga ratio there is first an increase in the intensity of blue emission at about 2.6 eV and then a transition to the growth of GaN1−xAsx alloy films. We present a model based on thermodynamic considerations, which can explain how this might occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号