首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malondialdehyde (MDA), a known mutagen and suspected carcinogen, is a product of lipid peroxidation and byproduct of eicosanoid biosynthesis. MDA can react with DNA to generate potentially mutagenic adducts on adenine, cytosine, and particularly guanine. In addition, repair-dependent frame shift mutations in a GCGCGC region of Salmonella typhimurium hisD3052 have been attributed to formation of interstrand cross-links (Mukai, F. H. and Goldstein, B. D. Science 1976, 191, 868--869). The cross-linked species is unstable and has never been characterized but has been postulated to be a bis-imino linkage between N(2) positions of guanines. An analogous linkage has now been investigated as a stable surrogate using the self-complementary oligodeoxynucleotide sequence 5'-d(AGGCG*CCT)(2,) in which G* represents guanines linked via a trimethylene chain between N(2) positions. The solution structure, obtained by NMR spectroscopy and molecular dynamics using a simulated annealing protocol, revealed the cross-link only minimally distorts duplex structure in the region of the cross-link. The tether is accommodated by partially unwinding the duplex at the lesion site to produce a bulge and tipping the guanine residues; the two guanines and the tether attain a nearly planar conformation. This distortion did not result in significant bending of the DNA, a result which was confirmed by gel electrophoresis studies of multimers of a 21-mer duplex containing the cross-link.  相似文献   

2.
A study of the kinetics and mechanism of the reaction between the dinuclear Pt complex [(trans-PtCl(NH(3))(2))(2)(mu-NH(2)(CH(2))(6)NH(2))](2+) (1) and the 14-mer duplex 5'-d(ATACATG(7)G(8)TACATA)-3'.5'-d(TATG(25)TACCATG(18)TAT)-3' is reported. [(1)H,(15)N]-HSQC NMR was used to follow the reaction at 298 K, pH 5.4. The product is primarily the 5'-5' 1,4-interstrand cross-link between G(8) and G(18) bases and exists in two conformational forms. No evidence for the possible 1,2-intrastrand G(7)G(8) adduct was seen, confirming the preferential formation of interstrand cross-links by these dinuclear complexes. An initial electrostatic association of (15)N-1 with the duplex is indicated by changes in its (1)H/(15)N chemical shifts, followed by aquation of 1 to form the monoaqua monochloro species 2, with a rate constant of 4.00+/-0.03x10(-5) s(-1). Monofunctional binding to the duplex occurs primarily at G(8), the 3' base of the nucleophilic GG grouping, with a rate constant of 1.5+/-0.7 M(-1) s(-1). Changes in the (1)H/(15)N shifts indicate there is an electrostatic interaction between the unbound (PtN(3)Cl) group of the monofunctional adduct and the duplex. No peaks for a transient aquated monofunctional species are seen and closure of 3 to form the 1,4-G(8)G(18) interstrand cross-link (5) was treated as direct, with a rate constant of 4.47+/-0.06x10(-5) s(-1). The G(8)G(18) cross-link was confirmed from analysis of the NOESY NMR spectrum of the final product. Structural perturbations for the 1,4-interstrand cross-link extend over approximately four base-pairs and are similar to those found for a 1,4-interstrand cross-link with a shorter 8-mer -GTAC- sequence. A major distortion was evident for the 5'T (T(17)) adjacent to the platinated G(18), consistent with the findings from the use of chemical probes to investigate the conformation of 1,4-interstrand cross-links.  相似文献   

3.
Michael addition of trans-4-hydroxynonenal (HNE) to deoxyguanosine yields diastereomeric 1,N(2)-dG adducts in DNA. When placed opposite dC in the 5'-CpG-3' sequence, the (6S,8R,11S) diastereomer forms a N(2)-dG:N(2)-dG interstrand cross-link [Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc.2003, 125, 5687-5700]. We refined its structure in 5'-d(G(1)C(2)T(3)A(4)G(5)C(6)X(7)A(8)G(9)T(10)C(11)C(12))-3'·5'-d(G(13)G(14)A(15)C(16)T(17)C(18)Y(19)C(20)T(21)A(22)G(23)C(24))-3' [X(7) is the dG adjacent to the C6 carbon of the cross-link or the α-carbon of the (6S,8R,11S) 1,N(2)-dG adduct, and Y(19) is the dG adjacent to the C8 carbon of the cross-link or the γ-carbon of the HNE-derived (6S,8R,11S) 1,N(2)-dG adduct; the cross-link is in the 5'-CpG-3' sequence]. Introduction of (13)C at the C8 carbon of the cross-link revealed one (13)C8→H8 correlation, indicating that the cross-link existed predominantly as a carbinolamine linkage. The H8 proton exhibited NOEs to Y(19) H1', C(20) H1', and C(20) H4', orienting it toward the complementary strand, consistent with the (6S,8R,11S) configuration. An NOE was also observed between the HNE H11 proton and Y(19) H1', orienting the former toward the complementary strand. Imine and pyrimidopurinone linkages were excluded by observation of the Y(19)N(2)H and X(7) N1H protons, respectively. A strong H8→H11 NOE and no (3)J((13)C→H) coupling for the (13)C8-O-C11-H11 eliminated the tetrahydrofuran species derived from the (6S,8R,11S) 1,N(2)-dG adduct. The (6S,8R,11S) carbinolamine linkage and the HNE side chain were located in the minor groove. The X(7)N(2) and Y(19)N(2) atoms were in the gauche conformation with respect to the linkage, maintaining Watson-Crick hydrogen bonds at the cross-linked base pairs. A solvated molecular dynamics simulation indicated that the anti conformation of the hydroxyl group with respect to C6 of the tether minimized steric interaction and predicted hydrogen bonds involving O8H with C(20)O(2) of the 5'-neighbor base pair G(5)·C(20) and O11H with C(18)O(2) of X(7)·C(18). These may, in part, explain the stability of this cross-link and the stereochemical preference for the (6S,8R,11S) configuration.  相似文献   

4.
(1R,2R-Diaminocyclohexane)oxalatoplatinum(II) (oxaliplatin) is a third-generation platinum anticancer compound that produces the same type of inter- and intrastrand DNA cross-links as cisplatin. In combination with 5-fluorouracil, oxaliplatin has been recently approved in Europe, Asia, and Latin America for the treatment of metastatic colorectal cancer. We present here the crystal structure of an oxaliplatin adduct of a DNA dodecanucleotide duplex having the same sequence as that previously reported for cisplatin (Takahara, P. M.; Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J. Nature 1995, 377, 649-652). Pt-MAD data were used to solve this first X-ray structure of a platinated DNA duplex derived from an active platinum anticancer drug other than cisplatin. The overall geometry and crystal packing of the complex, refined to 2.4 A resolution, are similar to those of the cisplatin structure, despite the fact that the two molecules crystallize in different space groups. The platinum atom of the [Pt(R,R-DACH)](2+) moiety forms a 1,2-intrastrand cross-link between two adjacent guanosine residues in the sequence 5'-d(CCTCTGGTCTCC), bending the double helix by approximately 30 degrees toward the major groove. Both end-to-end and end-to-groove packing interactions occur in the crystal lattice. The latter is positioned in the minor groove opposite the platinum cross-link. A novel feature of the present structure is the presence of a hydrogen bond between the pseudoequatorial NH hydrogen atom of the (R,R)-DACH ligand and the O6 atom of the 3'-G of the platinated d(GpG) lesion. This finding provides structural evidence for the importance of chirality in mediating the interaction between oxaliplatin and duplex DNA, calibrating previously published models used to explain the reactivity of enantiomerically pure vicinal diamine platinum complexes with DNA in solution. It also provides a new kind of chiral recognition between an enantiomerically pure metal complex and the DNA double helix.  相似文献   

5.
《Chemistry & biology》1997,4(5):373-387
Background: The bleomycins (BLMs) are a family of natural products used clinically as antitumor agents. In the presence of their required cofactors, iron and oxygen, BLMs bind to and mediate single-stranded and double-stranded DNA cleavage. Recently, two dimensional nuclear magnetic resonance (2D NMR) spectroscopic studies and molecular modeling have provided a picture of how the hydroperoxide form of cobalt BLM A2 (HOO-CoBLM), an analog of ‘activated’ iron BLM (HOO-FeBLM), binds to a d(GpC) motif and of the basis for both sequence specificity and chemical specificity of DNA cleavage.Results: The solution structure of HOO-CoBLM bound to d(CCAGTACTGG) containing a'hot spot' for double-stranded DNA cleavage at T5 and T15 is reported using constraints from 2D NMR spectroscopy. The mode of binding and basis for sequence specificity and chemical specificity of cleavage is almost identical to that of a d(GpC) motif. This structure has allowed formulation of a structural model for how a single molecule of FeBLM can mediate a double-stranded DNA cleavage event without dissociation from the DNA.Conclusions: The structural similarity of HOO-CoBLM bound to d(GpT) in d(CCAGTACTGG) compared to a d(GpC) motif suggests a general paradigm for the binding of HOO-CoBLM to DNA and, by analogy, for the binding of the biological significant entity 100-FeBLM.  相似文献   

6.
The interstrand N2,N2-dG DNA cross-linking chemistry of the acrolein-derived gamma-OH-1,N2-propanodeoxyguanosine (gamma-OH-PdG) adduct in the 5'-CpG-3' sequence was monitored within a dodecamer duplex by NMR spectroscopy, in situ, using a series of site-specific 13C- and 15N-edited experiments. At equilibrium 40% of the DNA was cross-linked, with the carbinolamine form of the cross-link predominating. The cross-link existed in equilibrium with the non-crosslinked N2-(3-oxo-propyl)-dG aldehyde and its geminal diol hydrate. The ratio of aldehyde/diol increased at higher temperatures. The 1,N2-dG cyclic adduct was not detected. Molecular modeling suggested that the carbinolamine linkage should be capable of maintaining Watson-Crick hydrogen bonding at both of the tandem C x G base pairs. In contrast, dehydration of the carbinolamine cross-link to an imine (Schiff base) cross-link, or cyclization of the latter to form a pyrimidopurinone cross-link, was predicted to require disruption of Watson-Crick hydrogen bonding at one or both of the tandem cross-linked C x G base pairs. When the gamma-OH-PdG adduct contained within the 5'-CpG-3' sequence was instead annealed into duplex DNA opposite T, a mixture of the 1,N2-dG cyclic adduct, the aldehyde, and the diol, but no cross-link, was observed. With this mismatched duplex, reaction with the tetrapeptide KWKK formed DNA-peptide cross-links efficiently. When annealed opposite dA, gamma-OH-PdG remained as the 1,N2-dG cyclic adduct although transient epimerization was detected by trapping with the peptide KWKK. The results provide a rationale for the stability of interstrand cross-links formed by acrolein and perhaps other alpha,beta-unsaturated aldehydes. These sequence-specific carbinolamine cross-links are anticipated to interfere with DNA replication and contribute to acrolein-mediated genotoxicity.  相似文献   

7.
To investigate the photoreactions of BrU in Z-DNA, the photoirradiation of 5'-d(C1G2C3G4BrU5G6C7G8)-3'/5'-d(C9mG10C11A12C13mG14C15G16)-3'(ODN 1-2) was investigated. In accord with previous observations, B-form ODN 1-2 with the 5'-GBrU sequence showed very weak photoreactivity. However, Z-form ODN 1-2 in 2 M NaCl underwent photoreaction to afford 5'-d(CGC)rGd(UGCG)-3' together with the formation of imidazolone (Iz) contained 5'-d(CIzCACmGCG)-3'. The results clearly indicate that structural changes caused by the B-Z transition dramatically increased the photoreactivity of ODN 1-2. Inspection of the molecular structure of Z-DNA suggests that there is unique four-base pi-stacks at the G4-BrU5-C11-mG10 in ODN 1-2. These results suggest that the intriguing possibility that the mG10 in a complementary strand located at the end of the four-base pi-stacks may act as an electron donor. To test the hypothesis of interstrand charge transfer from mG10 to BrU5 within the four-base pi-stacks in Z-DNA, ODN 1-3 samples in which the putative donor G10 residue was replaced with 8-methoxyguanine (moG) were prepared, since moG is known to trap cation radicals to yield Iz moieties in DNA. Photoirradiation of ODN 1-3 efficiently produced 5'-d(CGC)rGd(UGCG)-3' together with formation of 5'-d(CIzCACmGCG)-3'. These results clearly indicate that the interstrand charge transfer from mG10 to BrU5 initiates the photoreaction. In clear contrast, other replacements of G with moG did not enhance the photoreactivity. The present study revealed the presence of unique four-base pi-stacks in Z-DNA and photoirradition of BrU in Z-DNA causes efficient electron transfer from G within this cluster.  相似文献   

8.
trans-4-Hydroxynonenal (HNE) is a peroxidation product of omega-6 polyunsaturated fatty acids. The Michael addition of deoxyguanosine to HNE yields four diastereomeric exocyclic 1,N(2)-dG adducts. The corresponding acrolein- and crotonaldehyde-derived exocyclic 1,N(2)-dG adducts undergo ring-opening to N(2)-dG aldehydes, placing the aldehyde functionalities into the minor groove of DNA. The acrolein- and the 6R-crotonaldehyde-derived exocyclic 1,N(2)-dG adducts form interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Only the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry forms interstrand N(2)-dG:N(2)-dG cross-links in the 5'-CpG-3' sequence context. Moreover, as compared to the exocyclic 1,N(2)-dG adducts of acrolein and crotonaldehyde, the cross-linking reaction is slow (Wang, H.; Kozekov, I. D.; Harris, T. M.; Rizzo, C. J. J. Am. Chem. Soc. 2003, 125, 5687-5700). Accordingly, the chemistry of the HNE-derived exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry has been compared with that of the (6R,8S,11R) adduct, when incorporated into 5'-d(GCTAGCXAGTCC)-3'.5'-d(GGACTCGCTAGC)-3', containing the 5'-CpG-3' sequence (X = HNE-dG). When placed complementary to dC in this duplex, both adducts open to the corresponding N(2)-dG aldehydic rearrangement products, suggesting that the formation of the interstrand cross-link by the exocyclic 1,N(2)-dG adduct of (6S,8R,11S) stereochemistry, and the lack of cross-link formation by the exocyclic 1,N(2)-dG adduct of (6R,8S,11R) stereochemistry, is not attributable to inability to undergo ring-opening to the aldehydes in duplex DNA. Instead, these aldehydic rearrangement products exist in equilibrium with stereoisomeric cyclic hemiacetals. The latter are the predominant species present at equilibrium. The trans configuration of the HNE H6 and H8 protons is preferred. The presence of these cyclic hemiacetals in duplex DNA is significant as they mask the aldehyde species necessary for interstrand cross-link formation.  相似文献   

9.
Simplified synthetic azinomycins preferentially induce in vitro DNA interstrand cross-links at the same 5'-d(GCC)-3' site as the natural products revealing that non-covalent interactions are relatively unimportant in defining sequence specificity.  相似文献   

10.
The cross-link dG-to-dG is an important product of DNA nitrosation. Its formation has commonly been attributed to nucleophilic substitution of N2 in a guaninediazonium ion by guanine, while recent studies suggest guanine addition to a cyanoamine derivative formed after dediazoniation, deprotonation, and pyrimidine ring-opening. The chemical viability of the latter mechanism is supported here by the experimental demonstration of rG-to-aG formation via rG addition to a synthetic cyanoamine derivative. Thus, all known products of nitrosative guanine deamination are consistent with the postulate of pyrimidine ring-opening. This postulated mechanism not only explains what is already known but also suggests that other products and other cross-links also might be formed in DNA deamination. The study suggests one possible new product: the structure isomer aG(N1)-to-rG(C2) of the classical G(N2)-to-G(C2) cross-link. While the formation of aG(N2)-to-rG(C2) has been established by chemical synthesis, the structure isomer aG(N1)-to-rG(C2) has been assigned tentatively based on its MS/MS spectrum and because this assignment is reasonable from a mechanistic perspective. Density functional calculations show preferences for the amide-iminol tautomer of the classical cross-link G(N2)-to-G(C2) and the amide-amide tautomer of G(N1)-to-G(C2). Moreover, the results suggest that both cross-links are of comparable thermodynamic stability, and that there are no a priori energetic or structural reasons that would prevent the formation of the structure isomer in the model reaction or in DNA.  相似文献   

11.
We describe the structure in aqueous solution of an extended-size DNA-like duplex with base pairs that are approximately 2.4 A longer than those of DNA. Deoxy-lin-benzoadenosine (dxA) was employed as a dA analogue to form hydrogen-bonded base pairs with dT. The 10mer self-complementary extended oligodeoxynucleotide 5'-d(xATxAxATxATTxAT) forms a much more thermodynamically stable duplex than the corresponding DNA sequence, 5'-d(ATAATATTAT). NMR studies show that this extended DNA (xDNA) retains many features of natural B-form DNA, but with a few structural alterations due to its increased helical diameter. The results give insight into the structural plasticity of the natural DNA backbone and lend insight into the evolutionary origins of the natural base pairs. Finally, this structural study confirms the hypothesis that extended nucleobase analogues can form stable DNA-like structures, suggesting that alternative genetic systems might be viable for storage and transfer of genetic information.  相似文献   

12.
This paper describes the synthesis and properties of a new type of modified oligodeoxynucleotide containing a neutral but highly polarized squaryl group as a novel mimic of the phosphate group. A modified thymidine dimer derivative (TsqT) having a squaryldiamide linkage was synthesized in almost quantitative yield by a two-step substitution of diethyl squarate with 3'-amino-5'-O-(4,4'-dimethoxytrityl)-3'-deoxythymidine and 5'-amino-5'-deoxythymidine. The CD and UV studies of TsqT suggest that this dimer has basically a structure similar to that of TpT. The NMR studies of TsqT show a unique property, namely, that the squaryl group of TsqT is influenced by Mg2+ concentration. The ab initio calculations of TsqT showed a highly polarized structure resembling that of a phosphate group. This dimer structural motif was finally incorporated into oligodeoxynucleotides by use of the phosphoramidite approach. The hybridization affinity of these modified oligodeoxynucleotides for the complementary and mismatched oligodeoxynucleotides was studied in detail by using Tm experiments. Consequently, it turned out that in a matched duplex of 5'-d(CGCATsqTAGCC)-3'/5'-d(GGCTAATGCG)-3' the A-T base pairs at the modified site can be preserved, but instead thermal destabilization of the overall structure was observed. To estimate the structure of the duplex, two kinds of fluorescein chromophores (fluorescein (FL) and cyanine 3 (Cy3)) were introduced into the 5'-terminal site of 5'-d(GACGCATsqTAGCCGAT)-3' and 5'-d(ATCGGCTAATGCGTC)-3', respectively. The fluorescence resonance energy transfer experiments using these functionalized oligodeoxynucleotides suggest that the matched duplexes have a bent structure at the modified site. This conclusion was also strongly supported by computational MM and MD simulations.  相似文献   

13.
Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation. KEYWORDS: oxidatively generated DNA damage, photosensitization, guanine radical cation, DNA-protein cross-links.  相似文献   

14.
BACKGROUND: Mitomycin C (MC), a DNA cross-linking and alkylating agent, targets guanines in the m5CpG sequence with 2-3-fold preference over guanines in unmethylated CpG. Benzo[a]pyrenediolepoxide (BPDE) and several other aromatic carcinogens form guanine adducts with an identical selectivity for m5CpG, and in certain cancers G to T transversion mutation 'hotspots' in the p53 tumor suppressor gene are more frequent at this sequence than at guanines in other sequences. MC appears suitable to probe the general mechanism of this selectivity. RESULTS: A 162-bp DNA fragment containing C, m5C or f5C (5-fluoro cytosine) at all cytosine positions was cross-linked by MC at guanines in CpG steps. The extent of cross-linking increased in the order f5C < C < m5C. Monoalkylation or cross-linking of duplex 12-mer oligonucleotides containing a single CpG, f5CpG or m5CpG step gave yields of adducts that increased in the same order. The rates showed a correlation with the Hammett sigma constant of the methyl and fluoro substituents of the cytosine. Only the base-pair cytosine substituent influenced reactivity of guanine. CONCLUSIONS: The 2-amino group of guanine in the m5CpG sequence of DNA has a greater nucleophilic reactivity with mitomycin than CpG. Evidence is presented for a novel mechanism: transmission of the electron-donating effect of the 5-methyl substituent of the cytosine to guanine through H-bonding of the m5C.G base pair. The results explain the enhanced reaction of BPDE at m5CpG in DNA and the origin of G-T mutational hotspots in the p53 gene in cancer.  相似文献   

15.
DNA interchain cross-links formed by acrolein and crotonaldehyde   总被引:1,自引:0,他引:1  
Acrolein and higher alpha,beta-unsaturated aldehydes are bifunctional genotoxins. The deoxyguanosine adduct of acrolein, 3-(2-deoxy-beta-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purin-10(3H)-one (8-hydroxy-1,N(2)-propanodeoxyguanosine, 2a), is a major DNA adduct formed by acrolein. The potential for oligodeoxynucleotide duplexes containing 2a to form interchain cross-links was evaluated by HPLC, CZE, MALDI-TOF, and melting phenomena. Interchain cross-links represent one of the most serious types of damage in DNA since they are absolute blocks to replication. In oligodeoxynucleotides containing the sequence 5'-dC-2a, cross-linking occurred in a slow, reversible manner to the extent of approximately 50%. Enzymatic digestion to form 3-(2-deoxy-beta-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-(N(2)-2'-deoxyguanosinyl)pyrimido[1,2-a]purin-10(3H)one (5a) and reduction with NaCNBH(3) followed by enzymatic digestion to give 1,3-bis(2'-deoxyguanosin-N(2)-yl)propane (6a) established that cross-linking had occurred with the exocyclic amino group of deoxyguanosine. It is concluded that the cross-link is a mixture of imine and carbinolamine structures. With oligodeoxynucleotide duplexes containing the sequence 5'-2a-dC, cross-links were not detected by the techniques enumerated above. In addition, (15)N-(1)H HSQC and HSQC-filtered NOESY spectra carried out with a duplex having (15)N-labeling of the target amino group established unambiguously that a carbinolamine cross-link was not formed. The potential for interchain cross-link formation by the analogous crotonaldehyde adduct (2b) was evaluated in a 5'-dC-2b sequence. Cross-link formation was strongly dependent on the configuration of the methyl group at C6 of 2b. The 6R diastereomer of 2b formed a cross-link to the extent of 38%, whereas the 6S diastereomer cross-linked only 5%.  相似文献   

16.
DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C-C covalent-bond is estimated to be ~10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson-Crick hydrogen-bond network and induces bend and unwinding angles of ~20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.  相似文献   

17.
DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2'-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the selenoxide rearrangements indicates that the rate-determining step for cross-linking is after methide formation. Cross-linking by the thymidine derivative in duplex DNA shows a modest kinetic preference when flanked by pyrimidines as opposed to purines. In contrast, the rate constant for cross-link formation from 5 opposite dG in duplex DNA is strongly dependent upon the flanking sequence and, in general, is at least an order of magnitude slower than that for 1 in an otherwise identical sequence. Introduction of mispairs at the base pairs flanking 5 or substitution of the opposing dG by dI significantly increases the rate constant and yield for cross-linking, indicating that stronger hydrogen bonding between the methide derived from it and dG compared to dA and the respective electrophile derived from 1 limits reaction by increasing the barrier to rotation into the required syn-conformation. Incorporation of 1 or 5 in triplex forming oligonucleotides (TFOs) that utilize Hoogsteen base pairing also yields interstrand cross-links. The dC derivative produces ICLs approximately 10x faster than the thymidine derivative when incorporated at the 5'-termini of the TFOs and higher yields when incorporated at internal sites. The slower, less efficient ICL formation emanating from 1 is attributed to reaction at N1-dA, which requires local melting of the duplex. In contrast, 5 produces cross-links by reacting with N7-dG. The cross-linking reactions of 1 and 5 illustrate the versatility and utility of these molecules as mechanistic probes and tools for biotechnology.  相似文献   

18.
Reactive oxygen species (ROS) can damage DNA. Although a number of single nucleobase lesions induced by ROS have been structurally characterized, only a few intrastrand cross-link lesions have been identified and characterized, and all of them involve adjacent thymine and guanine or adenine. In mammalian cells, the cytosines at CpG sites are methylated. On the basis of the similar reactivity of 5-methylcytosine and thymine toward hydroxyl radical and the similar orientation of adjacent thymine guanine (TG) and 5-methylcytosine guanine (mCG) in B-DNA, we predict that the cross-link lesion, which was identified in TG and has a covalent bond formed between the 5-methyl carbon atom of T and the C8 carbon atom of G, should also form at mCG site. Here, we report for the first time the independent generation of 5-(2'-deoxycytidinyl)methyl radical, and our results demonstrate that this radical can give rise to the predicted novel intrastrand cross-link lesion in dinucleoside monophosphates d(mCG) and d(GmC). Furthermore, we show that the cross-link lesion can also form in d(mCG) from gamma irradiation under anaerobic conditions.  相似文献   

19.
Cisplatin and carboplatin are used successfully to treat various types of cancer. The drugs target the nucleosomes of cancer cells and form intrastrand DNA cross-links that are located in the major groove. We constructed two site-specifically modified nucleosomes containing defined intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links. Histones from HeLa-S3 cancer cells were transferred onto synthetic DNA duplexes having nucleosome positioning sequences. The structures of these complexes were investigated by hydroxyl radical footprinting. Employing nucleosome positioning sequences allowed us to quantify the structural deviation induced by the cisplatin adduct. Our experiments demonstrate that a platinum cross-link locally overrides the rotational setting predefined in the nucleosome positioning sequence such that the lesion faces toward the histone core. Identical results were obtained for two DNA duplexes in which the sites of platination differed by approximately half a helical turn. Additionally, we determined that cisplatin unwinds nucleosomal DNA globally by approximately 24 degree. The intrastrand cis-{Pt(NH3)2}(2+) 1,3-d(GpTpG) cross-links are located in an area of the nucleosome that contains locally overwound DNA in undamaged reference nucleosomes. Because most nucleosome positions in vivo are defined by the intrinsic DNA sequence, the ability of cisplatin to influence the structure of these positioned nucleosomes may be of physiological relevance.  相似文献   

20.
A 5-(2'-Deoxyuridinyl)methyl radical (1) was independently generated from three photochemical precursors and is the first example of a DNA radical that forms interstrand cross-links. Oxygen labeling experiments support generation of 1 by all precursors. Interstrand cross-links are produced upon irradiation of DNA containing any of the precursors. Cross-linking occurs via reaction with the opposing 2'-deoxyadenosine and is independent of O(2). The independence of cross-link formation on O(2) is explained by kinetic analysis, which shows that the radical reacts reversibly with O(2). Examination of the effects of glutathione on cross-link formation under anaerobic conditions suggests that adoption of the syn-conformation by 1 is the rate-limiting step in the process. Interstrand cross-link formation is reversible in the presence of a good nucleophile. The stability of the interstrand cross-link suggests that the isolated molecule is a rearrangement product of that formed in solution. The rearrangement is a consequence of the isolation procedure but also occurs slowly in solution. Oxygen independent cross-link formation may be useful for the purposeful damage of DNA in hypoxic tumor cells, where O(2) is deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号