首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The measurement of relative intensities in CO2 combination bands spectrum is performed using wavelength modulation spectroscopy (WMS) and a DFB (distributed feedback) diode laser operating at 1.6 μm. The diode laser is stabilized with an external Fabry–Pérot interferometer and absorption spectroscopy is performed in a multipass gas cell. A spectrum containing spectral lines of both 13CO2 and 12CO2 isotopic species is recorded. The variation of laser power during frequency scanning and the line shape are taken into account to accurately extract line intensities from experimental data. The isotopic concentration ratio is deduced from the intensity ratio. Both ratios are measured with an accuracy of about 0.5% in pure CO2. Received: 9 June 2000 / Published online: 8 November 2000  相似文献   

2.
A portable modular gas sensor for measuring the 13C/12C isotopic ratio in CO2 with a precision of 0.8‰(±1σ) was developed for volcanic gas emission studies. This sensor employed a difference frequency generation (DFG)-based spectroscopic source operating at 4.35 μm (∼2300 cm-1) in combination with a dual-chamber gas absorption cell. Direct absorption spectroscopy using this specially designed cell permitted rapid comparisons of isotopic ratios of a gas sample and a reference standard for appropriately selected CO2 absorption lines. Special attention was given to minimizing undesirable precision degrading effects, in particular temperature and pressure fluctuations. Received: 16 April 2002 / Revised version: 28 May 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-713/5245237, E-mail: fkt@rice.edu  相似文献   

3.
CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5–1.5 m) and laser average power (0.4–4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 μm, 0.4% for CO2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ± 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 μm. PACS 42.68.Wt; 95.75.Qr  相似文献   

4.
2 . The laser generates an intense infrared macropulse with a duration of 17 μs; the macropulse consists of a train of 380 micropulses, each of which has a duration of a few picoseconds. The fluence of a macropulse was estimated to be about 16 Jcm-2 at a beam waist. Peak wavelengths were set in the range of 9–10 μm. The macropulse induced the IRMPD of 1 and 5 Torr CHBrF2; most of molecules in the focal region seemed to decompose at a wavelength of 9.3 μm. The mechanism is the initial decomposition of CHBrF2 to CF2 and HBr, followed by the dimerization of CF2 to form C2F4. The decomposition was found to be isotopically selective at 9.7 μm; the final product C2F4 had a 13C atomic fraction of 6%. Th e addition of CO2 to CHBrF2 significantly decreased the yield of C2F4. vibrationally excited CHBrF2 molecules produced by laser pulses were efficiently deactivated by CO2 molecules. Received: 7 October 1996  相似文献   

5.
The Er:YAG and the CO2 laser are competitors in the field of hard tissue ablation. The use of Er:YAG lasers (2.94 μm, pulse length L of 100 to 200 μs) show smaller areas of thermal defects then ‘‘superpulsed’’ CO2 lasers with pulse lengths of approximately 100 μs. Only the development of a Q-switched CO2 laser (9.6 μm, τL=250 ns) allowed for similar results. In this paper new results for the Er:YAG and the Q-switched CO2 laser under the influence of water spray will be presented. Several parameters are of special interest for these investigations: the specific ablation energy, which shows a minimum for the CO2 laser at an energy density of 9 J/cm 2 and a broad shallow minimum in the range of 10 to 70 J/cm2 for the Er:YAG laser, and comparison of the cut-shape and depth. Surface effects and cutting velocity are discussed based on SEM pictures. Received: 19 July 2000 / Revised version: 1 November 2000 / Published online: 30 November 2000  相似文献   

6.
Tunable diode-laser absorption of CO2 near 2.7 μm incorporating wavelength modulation spectroscopy with second-harmonic detection (WMS-2f) is used to provide a new sensor for sensitive and accurate measurement of the temperature behind reflected shock waves in a shock-tube. The temperature is inferred from the ratio of 2f signals for two selected absorption transitions, at 3633.08 and 3645.56 cm−1, belonging to the ν 1+ν 3 combination vibrational band of CO2 near 2.7 μm. The modulation depths of 0.078 and 0.063 cm−1 are optimized for the target conditions of the shock-heated gases (P∼1–2 atm, T∼800–1600 K). The sensor is designed to achieve a high sensitivity to the temperature and a low sensitivity to cold boundary-layer effects and any changes in gas pressure or composition. The fixed-wavelength WMS-2f sensor is tested for temperature and CO2 concentration measurements in a heated static cell (600–1200 K) and in non-reactive shock-tube experiments (900–1700 K) using CO2–Ar mixtures. The relatively large CO2 absorption strength near 2.7 μm and the use of a WMS-2f strategy minimizes noise and enables measurements with lower concentration, higher accuracy, better sensitivity and improved signal-to-noise ratio (SNR) relative to earlier work, using transitions in the 1.5 and 2.0 μm CO2 combination bands. The standard deviation of the measured temperature histories behind reflected shock waves is less than 0.5%. The temperature sensor is also demonstrated in reactive shock-tube experiments of n-heptane oxidation. Seeding of relatively inert CO2 in the initial fuel-oxidizer mixture is utilized to enable measurements of the pre-ignition temperature profiles. To our knowledge, this work represents the first application of wavelength modulation spectroscopy to this new class of diode lasers near 2.7 μm.  相似文献   

7.
We have reinvestigated 13CH3OH as a source of far-infrared (FIR) laser emission using a CO2 laser as a pumping source. Thirty new FIR laser lines in the range 36.5 μm to 202.6 μm were observed and characterized. Five of them have wavelengths between 36.5 and 75 μm and have sufficient intensity to be used in LMR spectroscopy. Using Fourier-transform spectroscopic data in the infrared (IR) and FIR regions we have determined the assignment for 10 FIR laser transitions and predict nine frequencies for laser lines which have yet to be observed. Received: 17 July 2000 / Published online: 6 December 2000  相似文献   

8.
Near-infrared trace-gas sensors based on room-temperature diode lasers   总被引:3,自引:0,他引:3  
2 monitor designed for field applications using room-temperature diode lasers are presented. Near-infrared DFB lasers operating at 1.57 μm and around 2.0 μm have been used for CO2 measurements. At ambient concentration levels a resolution of more than two orders of magnitude has been demonstrated at 1.57 μm, at 2 μm the precision is in the order of 0.1 ppm CO2, and for trace analysis a detection limit of 10 ppb has been obtained. The measurements demonstrate the capability of near-infrared DFB diode lasers for the precise determination of CO2 concentrations as required for climatological, medical, or industrial applications. Received: 24 February 1998/Revised version: 27 April 1998  相似文献   

9.
A swept-wavelength source is created by connecting four elements in series: a femtosecond fiber laser at 1.56 μm, a non-linear fiber, a dispersive fiber and a tunable spectral bandpass filter. The 1.56-μm pulses are converted to super-continuum (1.1–2.2 μm) pulses by the non-linear fiber, and these broadband pulses are stretched and arranged into wavelength scans by the dispersive fiber. The tunable bandpass filter is used to select a portion of the super-continuum as a scan-wavelength output. A variety of scan characteristics are possible using this approach. As an example, an output with an effective linewidth of approximately 1 cm-1 is scanned from 1350–1550 nm every 20 ns. Compared to previous scanning benchmarks of approximately 1 nm/μs, such broad, rapid scans offer new capabilities: a gas sensing application is demonstrated by monitoring absorption bands of H2O, CO2, C2H2 and C2H6O at a pressure of 10 bar. Received: 5 August 2002 / Revised version: 23 September 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +1-608/265-2316, E-mail: ssanders@engr.wisc.edu  相似文献   

10.
2 , H2O, N2O, and NH3 concentrations in various flowfields using absorption spectroscopy and extractive sampling techniques. An external-cavity diode laser with a tuning range of 1.953–2.057 μm was used to record absorption lineshapes from measured transitions in the CO22 03, ν1+2ν2 03, and 2ν13 bands, H2O ν23and ν12 bands, N2O 2ν1+4ν2 0, ν2 1+2ν3, 3ν1+2ν2 0, and 4ν1 bands, and NH3ν14 and ν34 bands. Measured CO2, H2O, and N2O survey spectra were compared to calculations to verify the HITRAN96 database and used to determine optimum transitions for species detection. Individual lineshape measurements were used to determine fundamental spectroscopic parameters including the line strength, line-center frequency, and self-broadening coefficient of the probed transition. The results represent the first measurements of CO2, H2O, N2O, and NH3 absorption near 2.0 μm using room-temperature near-IR diode lasers. Received: 12 March 1998/Revised version: 7 May 1998  相似文献   

11.
The paper is based on C12O2 16 rotational constants and line frequency data gained from laser frequency measurements performed recently. Equations for transition frequencies and their standard deviations have been derived. A list is presented containing accurate 10.4 and 9.4 μm line frequencies and their relative and absolute standard deviations; also wavenumbers and wavelengths are given for each line. For transitions usually observed in CO2 lasers the relative standard deviations are on the order of a few megahertz, the absolute accuracy is about 25 MHz for the 10.4 μm band and about 18 MHz for the 9.4=μm band.  相似文献   

12.
We performed highly sensitive measurements of stable carbon isotopes of CO2 using wavelength modulation spectroscopy with a distributed feedback laser diode in the 2-μm wavelength range. Ro-vibrational transitions, which belong to the different combination bands, were selected to measure the 13CO2/12CO2 carbon isotope ratio. The δ 13C value was determined through the signals obtained in a Herriott-type multipass cell with an optical path length of 29.9 m. The limit of detection for CO2 using our measurement system was 16±1 parts per billion by volume at the strongest absorption peak that is assigned to the 2ν 1+ν 3 R(16) line within the laser emitting frequency region. The 10-h long term precision was a δ 13C standard deviation of 0.24‰ (1σ) with the best suited line pairs of 12CO2 and 13CO2 and with careful temperature and pressure control in the cell. The 3-min response and high precision of this measurement allows for precise continuous measurements of stable carbon isotopes in ambient CO2.  相似文献   

13.
A recently improved three-laser heterodyne system was used to frequency measure ten previously observed optically pumped far-infrared (FIR) laser emissions from the partially deuterated methanol isotopologue CH2DOH. Also, a 64.0 μm FIR emission generated by the 9P32 line of the carbon dioxide (CO2) laser was discovered and frequency measured. These newly measured frequencies have fractional uncertainties on the order of ±2×10-7 and correspond to laser wavelengths ranging from 42.6 to 152.7 μm. The offset frequency for the CO2 pump laser was measured for twenty-two CH2DOH FIR laser emissions. PACS 07.57.Hm; 42.55Lt; 42.62.Eh  相似文献   

14.
We report infrared laser emission in the region of 3 to 5 μm from sodium vapour optically pumped by a pulsed dye laser with wavelengths ranging from 585 to 610nm. Twophoton excitation processes are believed to be responsible for the primary excitation. Both molecular transitions (4 to 5 μm) between high lying states, and atomic transitions (52 S 1/2−42 P 3/2,1/2 at 3.41 μm) have been identified.  相似文献   

15.
We present the first photoacoustic spectrometer for gas sensing employing both the fundamental and the frequency-doubled radiation of a continuously tunable high-pressure CO2 laser with room temperature operation. A quasi-phase-matched diffusion-bonded GaAs crystal is used in the system for second-harmonic generation. A pulsed photoacoustic detection scheme with a non-resonant cell, equipped with an 80-microphone array, is employed. The wide continuous tuning range in the fundamental (9.2–10.7 μm) and the frequency-doubled (4.6–5.35 μm) regimes, together with the narrow linewidth of 540 MHz (0.018 cm-1) for the 10-μm region and of 1050 MHz (0.0315 cm-1) for the 5-μm region, allow the measurement of gas mixtures, individual species and isotope discrimination. This is illustrated with measurements on NO and CO2. The measured isotope ratio 15 NO/14 NO=(3.58±0.55)×10-3 agrees well with the literature (3.700×10-3) and demonstrates the good selectivity of the system. Received: 30 April 2002 / Revised version: 10 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +41-1/633-1077, E-mail: sigrist@iqe.phys.ethz.ch  相似文献   

16.
2 , and its sensitivity is 7(2)×10-8 in a 1-Hz bandwidth. The corresponding minimum detectable concentration of CO2 in air has been estimated to be 1 ppm · m. This opens the possibility of a detection at ppb levels at 2 μm, where a two orders of magnitude increase in the CO2 absorption signal is demonstrated. Received: 06 April 1998/Revised version: 02 July 1998  相似文献   

17.
The partially deuterated isotopes of methanol, CH2DOH and CHD2OH, have been reinvestigated as sources of far-infrared (FIR) laser emissions using an optically pumped molecular laser (OPML) system recently designed for wavelengths below 150 μm. With this system, 10 new FIR laser emissions from these isotopes ranging from 32.8 to 174.6 μm have been discovered. This includes the shortest known OPML emission from CHD2OH, at 32.8 μm. These lines are reported with their operating pressure, polarizations relative to the CO2 pump laser and wavelengths, measured to ±0.5 μm. In addition, polarizations for three previously observed FIR laser lines from CHD2OH were measured for the first time. This paper is dedicated to the memory of Dr. K.M. Evenson, a pioneer in the field for his role in the development of optically pumped molecular lasers and their use in laser frequency measurements and the laser magnetic resonance technique. His scientific expertise, guidance, mentoring and friendship will be greatly missed. Received: 27 March 2002 / Published online: 8 May 2002  相似文献   

18.
A diode laser spectrometer was used in the laboratory to study H2O and CO2 line intensities and self-broadening coefficients around 1.877 μm. The spectral region ranging from 5327 cm-1 to 5329 cm-1, which is suitable for the in situ sensing of water vapor and carbon dioxide in the Martian atmosphere, was studied using a distributed feedback GaInSb diode laser from Nanoplus GmbH. We have studied one line from the (011)←(000)band of H2O and two lines from the (0112)I←(000) band of CO2. The results of intensity and self-broadening measurements are compared to available databases, ab initio calculations and previous experimental determinations. Finally, we discuss the current development of the tunable diode laser absorption spectrometer instrument, a laser diode sensor devoted to the in situ measurement of H2O and CO2 in the Martian atmosphere. PACS 07.57.Ty; 07.87.+v  相似文献   

19.
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 μm is generated by a compact fiber-coupled, difference-frequency-based spectrosopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2 cm) (corresponding to a power of ≈3 μW at 3.3 μm) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work. Received: 14 May / Revised version: 24 June 1999 / Published online: 30 September 1999  相似文献   

20.
A prototype off-axis integrated cavity output spectrometer (OA-ICOS) utilizing two identical cavities together with a near-infrared (1.63 μm) external cavity tunable diode laser is described. The two-cavity design—one for a reference gas and one for a sample gas—takes advantage of classical double-beam infrared spectrometer characteristics in reducing uncertainties due to laser scan or power instabilities and major temperature variations by a factor of three or better compared with a single-cavity scheme. This is the first OA-ICOS instrument designed to determine 13C/12C and 18O/16O ratios from CO2 rotation/vibration fine structure in three different combination bands. Preliminary results indicate that at 0.8 Hz a precision of 3.3 and 2.8 \permil\ is obtained for δ13C and δ18O, respectively, over a period of 10 h and a pure CO2 gas sample at 26 hPa. By averaging 100 spectra over a subset of the data, we achieved a precision of 1.6 and 0.8 \permil\ for δ13C and δ18O, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号