首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The use of recovered paper and paper manufacturing wastes are a potentially large, concentrated, and convenient raw material for ethanol production via enzyme hydrolysis and fermentation. However, many previous studies in the area have investigated impractically high enzyme charges. In this research, low dosages of enzymes on copy paper (CP) were investigated for the conditions of 5% consistency (w/v) and 50 °C for 48 h. The removal of inorganic filler (mainly calcium carbonate) by washing prior to hydrolysis led to higher sugar yields than the unwashed CP as well as CP acidified to remove the ash. Enzyme adsorption measurement showed that both acid-soluble ash and acid-insoluble ash adsorb enzymes with a greater affinity than fibers. Drying of the fibers (termed hornification) decreased the efficiency of enzyme hydrolysis, confirming previous results. The mechanical refining at 10% consistency in a laboratory refining mill of previously dried fibers improved the sugar recovery to similar or higher levels as never-dried fibers. By plotting water retention value (WRV) versus corresponding sugar recovery, it was shown that WRV is more useful at low enzyme charges reflecting the use of refining and the reversal of hornification. For de-ashed and refined copy paper, the sugar recovery was determined to be 82% and 97% with enzyme dosages of 4 and 8 Filter Paper Unit (FPU)/g oven-dried (OD) substrate.  相似文献   

2.
Layers of alumina were deposited on to bundled carbon fibers in an atomic layer deposition (ALD) process via sequential exposure to vapors of aluminium chloride and water, respectively. Scanning electron microscopic (SEM) images of the coated fibers revealed that each individual fiber within a bundle was coated evenly and separately, fibers are not bridged by the coating. SEM and transmission electron microscopic (TEM) images indicate that the coating was uniform and conformal with good adhesion to the fiber surface. Average deposition rate, measured from SEM images, was 0.06 nm per cycle at 500 °C. SEM also revealed that at deposition temperatures of 500 °C few of the fibers were damaged. At temperatures of 300 °C, no damaged fibers were observed, the average deposition rate decreased down to 0.033 nm per cycle. Oxidation resistance of the alumina-coated fibers was characterized by thermogravimetric analysis (TGA). The alumina coating improved oxidation resistance of the carbon fiber significantly. Oxidation onset temperature was 600 °C for fibers coated with a 45 nm thick alumina. Uncoated fibers, on the other hand, started to oxidize at temperatures as low as 250 °C.  相似文献   

3.
Cellulose nanocrystals (CNC) were first isolated from kenaf bast fibers and then characterized. The raw fibers were subjected to alkali treatment and bleaching treatment and subsequent hydrolysis with sulfuric acid. The influence of the reaction time on the morphology, crystallinity, and thermal stability of CNC was investigated. Fourier transform infrared spectroscopy showed that lignin and hemicellulose were almost entirely removed during the alkali and bleaching treatments. The morphology and dimensions of the fibers and acid-released CNC were characterized by field emission scanning electron microscopy and transmission electron microscopy. X-Ray diffraction analysis revealed that the crystallinity first increases upon hydrolysis and then decreases after long durations of hydrolysis. The optimal extraction time was found to be around 40 min during hydrolysis at 45 °C with 65% sulfuric acid. The thermal stability was found to decrease as the hydrolysis time increased. The electrophoretic mobility of the CNC suspensions was measured using the zeta potential, and it ranged from −8.7 to −95.3 mV.  相似文献   

4.
Summary: In this study cellulose nanowhiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were exposed to hydrolysis reactions for lignin and hemicellulose digestion and acquisition of nano-scale cellulose. Transmission electron microscopy (TEM) results demonstrated that the obtained cellulose nanocrystals had average length and thickness of 176 (±68 nm) and 7.5 (±2.9 nm), respectively. Infrared spectroscopy (FTIR) and wide angle x-ray diffraction (WAXD) showed that the process for extracting the nanowhiskers digested nearly all the lignin and hemicellulose from the balsa fiber and still preserved the aspect ratio and crystallinity satisfactory enough for future application as nanofillers in polymer nanocomposites. The thermogravimetric analysis (TGA) showed that the onset temperature of thermal degradation of the cellulose nanocrystals (226 °C) was higher than the onset temperature of the balsa fiber (215 °C), allowing its use in molding processes with polymers melts.  相似文献   

5.
A new offline-pyrolysis rig has been designed to allow multifunctional experiments for preparative and analytical purposes. The system conditions can be set and monitored, e.g. temperature, its gradients and heat flux. Some special features include (1) high heating rates up to 120 °C/s with pyrolysis temperatures up to 850 °C at variable pyrolysis times and (2) the selection of different atmospheres during pyrolysis. A complete mass balance of products and reactants (gas, liquids and solids) by gravimetric methods and sequential chromatographic analyses was obtained.The pyrolytic behaviour and the decomposition products of lignin-related compounds were studied under different conditions: heating rates (from 2.6 °C/s up to 120 °C/s), pyrolysis temperatures at 500 °C and 800 °C in different atmospheres (N2, H2, and mixtures of N2 and acetylene). Kraft lignin, soda lignin, organosolv lignin, pyrolytic lignin from pine bio-oil, residues from biomass hydrolysis and fermentation were studied.The obtained pyrolysis products were classified into three general groups: coke, liquid phase and gas phase (volatile organic compounds (VOC) and permanent gases). The liquid fraction was analysed by GC–MS/FID. In addition, comprehensive two-dimensional GC was applied to further characterise the liquid fraction. VOCs were semi-quantified by a modified headspace technique using GC–MS/FID analysis. The micro-pyrolysis rig proved to be an efficient and useful device for complex pyrolysis applications.  相似文献   

6.
The objective of this work was to determine the optimum conditions of sugarcane bagasse pretreatment with lime to increase the enzymatic hydrolysis of the polysaccharide component and to study the delignification kinetics. The first stage was an evaluation of the influence of temperature, reaction time, and lime concentration in the pretreatment performance measured as glucose release after hydrolysis using a 23 central composite design and response surface methodology. The maximum glucose yield was 228.45 mg/g raw biomass, corresponding to 409.9 mg/g raw biomass of total reducing sugars, with the pretreatment performed at 90°C, for 90 h, and with a lime loading of 0.4 g/g dry biomass. The enzymes loading was 5.0 FPU/dry pretreated biomass of cellulase and 1.0 CBU/dry pretreated biomass of β-glucosidase. Kinetic data of the pretreatment were evaluated at different temperatures (60°C, 70°C, 80°C, and 90°C), and a kinetic model for bagasse delignification with lime as a function of temperature was determined. Bagasse composition (cellulose, hemicellulose, and lignin) was measured, and the study has shown that 50% of the original material was solubilized, lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (60–90°C). The delignification was highly dependent on temperature and duration of pretreatment.  相似文献   

7.
The present work describes the delignification of wheat straw through an environmentally friendly process resulting from sequential application of autohydrolysis and organosolv processes. Wheat straw autohydrolysis was performed at 180°C during 30 min with a liquid–solid ratio of 10 (v/w); under these conditions, a solubilization of 44% of the original xylan, with 78% of sugars as xylooligosaccharides of the sum of sugars solubilized in the autohydrolysis liquors generated by the hemicellulose fraction hydrolysis. The corresponding solid fraction enrichment with 63.7% of glucan and 7.55% of residual xylan was treated with a 40% ethanol and 0.1% NaOH aqueous solution at a liquid–solid ratio of 10 (v/w), with the best results obtained at 180°C during 20 min. The highest lignin recovery, measured by acid precipitation of the extracted lignin, was 3.25 g/100 ml. The lignin obtained by precipitation was characterized by FTIR, and the crystallinity indexes from the native cellulose, the cellulose recovered after autohydrolysis, and the cellulose obtained after applying the organosolv process were obtained by X-ray diffraction, returning values of 21.32%, 55.17%, and 53.59%, respectively. Visualization of the fibers was done for all the processing steps using scanning electron microscopy.  相似文献   

8.
Hot water and aqueous ammonia fractionation of corn stover were used to separate hemicellulose and lignin and improve enzymatic digestibility of cellulose. A two-stage approach was used: The first stage was designed to recover soluble lignin using aqueous ammonia at low temperature, while the second stage was designed to recover xylan using hot water at high temperature. Specifically, the first stage employed a batch reaction using 15 wt.% ammonia at 60 °C, in a 1:10 solid:liquid ratio for 8 h, while the second stage employed a percolation reaction using hot water, 190–210 °C, at a 20 ml/min flow rate for 10 min. After fractionation, the remaining solids were nearly pure cellulose. The two-stage fractionation process achieved 68% lignin purity with 47% lignin recovery in the first stage, and 78% xylan purity, with 65% xylan recovery in the second stage. Two-stage treatment enhanced the enzymatic hydrolysis of remaining cellulose to 96% with 15 FPU/g of glucan using commercial cellulase enzymes. Enzyme hydrolyses were nearly completed within 12–24 h with the remaining solids fraction.  相似文献   

9.
This study investigated the optimization of the enzymatic processing conditions for polylactic acid (PLA) fibers using enzymes consisting of lipases originating from different sources. The hydrolytic activity was evaluated taking into consideration the pH, temperature, enzyme concentration, and treatment time. The structural change of the PLA fibers was measured in the optimal treatment conditions. PLA fiber hydrolysis by lipases was maximized for lipase from Aspergillus niger at 40 °C for 60 min at pH 7.5 with 60% (owf) concentration, for lipase from Candida cylindracea at 40 °C for 120 min at pH 8.0 with 70% (owf) concentration, and for lipase from Candida rugosa at 45 °C for 120 min at pH 8.0 with 70% (owf) concentration. There was a change in protein absorbance of the treatment solution before and after all lipase treatments. The analyses of the chemical structure change and structural properties of the PLA due to lipase treatment was confirmed by tensile strength, differential scanning calorimetry, wide-angle X-ray scattering diffractometry, Fourier transform infrared spectroscopy, and scanning electron microscopy.  相似文献   

10.
In this work, we examined the role of a non-ionic surfactant, Tween 20, on enzymatic hydrolysis of lignocelluloses. Delignified lignocelluloses (pine wood chip) were used as model substrates. Effects of Tween 20 on adsorption/desorption onto/from lignocelluloses with and without hydrolysis were evaluated respectively. Tween 20 lowered the non-biospecific adsorption of β-glucosidase and enhanced the bio-specific adsorption of cellulase. Tween 20 did not affect the liquid phase reaction (cellobiose hydrolysis). However, for the solid surface reaction (cellulose hydrolysis), cellulose conversion for 72 hrs was increased 9–21% and 1–8.5% for samples with high lignin contents (PI) and low lignin contents (PIII) by injection of Tween 20 (0.024–0.24 mM), respectively. Moreover, Tween 20 increased the cellulose conversion rate substantially. It is suggested that the increase of cellulase amount adsorbed due to the increase of effective cellulose surface by Tween 20 contribute to the enhancement of cellulose conversion.  相似文献   

11.
The aim of this work was to evaluate the biochemical features of the white-rot fungi Pycnoporus sanguineus cellulolytic complex and its utilization to sugarcane bagasse hydrolysis. When cultivated under submerged fermentation using corn cobs as carbon source, P. sanguineus produced high FPase, endoglucanase, β-glucosidase, xylanase, mannanase, α-galactosidase, α-arabinofuranosidase, and polygalacturonase activities. Cellulase activities were characterized in relation to pH and temperature. β-Glucosidase and FPase activities were higher at 55 °C, pH 4.5, and endoglucanase activity was higher at 60 °C, in a pH range of 3.5–4.0. All cellulase activities were highly stable at 40 and 50 °C through 48 h of pre-incubation. Crude enzymatic extract from P. sanguineus was applied in a saccharification experiment using acid-treated and alkali-treated sugarcane bagasse as substrate, and the hydrolysis yields were compared to that obtained by a commercial cellulase preparation. Reducing sugar yields of 60.4% and 64.0% were reached when alkali-treated bagasse was hydrolyzed by P. sanguineus extract and commercial cellulase, respectively. Considering the glucose production, it was observed that P. sanguineus extract and commercial cellulase ensured yields of 22.6% and 36.5%, respectively. The saccharification of acid-treated bagasse was lower than that of alkali-treated bagasse regardless of the cellulolytic extract. The present work showed that P. sanguineus has a great potential as an enzyme producer for biomass saccharification.  相似文献   

12.
The effect of fiber drying on the properties of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) produced using concentrated maleic acid hydrolysis of a never dried unbleached mixed hardwood kraft pulp was evaluated. Two drying conditions, i.e., air drying and heat drying at 105 °C were employed. It was found that drying (both air and heat) enhanced acid hydrolysis to result in slightly improved LCNC yields and less entangled LCNF. This is perhaps due to the fact that drying modified the cellulose supermolecular structure to become more susceptible to acid hydrolysis and the enhanced hydrolysis severity at the fiber surface when using dried fibers. Drying substantially improved LCNC crystallinity and LCNF suspension viscoelastic behavior. The present study quantitatively elucidated the effect of pulp drying (either air or heat) on producing cellulose nanomaterials and has practical importance because commercial market pulp (heat dried) is most likely to be used commercially.  相似文献   

13.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively.  相似文献   

14.
Distillers’ grains and corn fiber are the coproducts of the corn dry grind and wet milling industries, respectively. Availability of distillers’ grains and corn fiber at the ethanol plant and their high levels of lignocellulosic material make these coproducts attractive feedstocks for conversion to ethanol. In this study, dilute sulfuric acid hydrolysis of these coproducts was investigated in a multistage scheme. After the completion of each pretreatment stage, the liquid substrate was separated and reused in the succeeding pretreatment stage with a fresh substrate. The substrate from each stage was also subjected to enzyme hydrolysis in a separate experiment. The sulfuric acid concentration and the substrate loading were maintained at 1.0 vol% and 15.0 wt.%, respectively, and the temperature was maintained at 120 °C in all the experiments. Experiments were also performed to study the effect of removing oil from the samples prior to the pretreatment. The highest concentration of monomeric sugars (MS) was observed when three stages of pretreatment were followed by the enzyme reaction. The enzyme hydrolysis of the three-stage pretreated dried distillers’ grains and corn fiber yielded 122.6 ± 5.8 and 184.5 ± 4.1 mg/mL of MS, respectively. The formation of inhibitory products was also monitored.  相似文献   

15.
Natural fiber is often considered inadequate for high performance reinforcement of polymer matrix composites. However, some natural fibers have relatively high mechanical properties with modulus close to that of high-performance synthetic fibers. Since the reinforcing efficiency of a short fiber is determined not only by the fiber modulus, but also by other physical properties such as the length to diameter ratio. Here it is shown, for the first time, that pineapple leaf fiber, whose modulus is somewhat lower than that of aramid fiber, can be used to reinforce natural rubber more effectively than aramid fiber. The situation was achieved by breaking down the fiber bundles into the constituent microfibers to gain very high aspect ratio. Comparisons were made at fiber contents of 2, 5 and 10 parts (by weight) per hundred of rubber (phr) using dynamic mechanical analysis over a range of temperature. The results reveals that at temperature below the glass transition of the matrix rubber and low fiber contents of 2 and 5 phrs, aramid fiber displays slightly better reinforcement efficiency. At high temperatures of 25 and 60 °C and high fiber content of 10 phr, pineapple leaf microfiber clearly displays higher reinforcement efficiency than does aramid fiber. Surface modification of the fiber by silane treatment provides a slight improvement in reinforcing efficiency.  相似文献   

16.
Polyacrylonitrile fibers were oxidatively stabilized through 10 gradient‐elevated temperature zones in sequence. The ultrasonic etching method was used for fibril separation of fibers heated at different temperatures, and the fibrillar structure development was studied by scanning electron microscopy. The voids among fibrils are the weak combination points. Under ultrasonic etching, the voids are enlarged. Subsequently, the solvent enters and spreads among fibrils, which results in the separation of fibrils. Separated fibrils with diameters of 100–400 nm appear in fibers heated at less than 235°C. Fibrils in fibers heated from 195°C to 235°C tend to adhere to each other, and the observed macrofibrils are composed of several to dozens of fibrils. For fibers heated from 195°C to 245°C, only a few fibril bundles emerge on the skin near the fiber end, and the fibrils manifest themselves as numerous protuberances on the cross section. In the ranges of 255–275°C, fibrils compactly combine with each other, which suggests insolubility and infusibility, and no separated fibrils appear. The fibrils arrange in a systematic way along the fiber axis and grooves parallel to the fiber axis on the fibers' surface. These grooves are the macro behavior of fibrils arranging on the fiber surface. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Polyacrylonitrile‐based carbon fibers were modified by oxidation in air, and a systematic study of surface groups and surface resistance at different treated temperatures was made. Progressive fiber weight loss occurred with increasing extents of air oxidation, and it was approximately proportional to the extent of air oxidation from the onset of oxidation up to 400 °C. At this point 4.4% of the initial fiber weight had been lost. A faster loss of weight occurred as the extent of air oxidation increased from 400 °C to 700 °C. X‐ray photoelectron spectroscopy studies (C 1s and O 1s) indicated that the oxygen/carbon atomic ratio rose rapidly from 2.64% (as‐received carbon fiber) to 42.83% as the oxidation temperature was increased to 400 °C. Fourier transform infrared spectra showed the relative intensity of the peaks at about 3440 cm?1 from ―OH stretching vibrations and at 1634 cm?1 from ―C?O stretching vibrations increased significantly at 400 °C. FESEM micrographs showed that as‐received fibers show relatively smooth surface. With oxidation temperature increasing, the fiber surface was rougher. The surface resistance of treated carbon fibers decreased obviously with increasing oxidation temperatures. The most decrease was about 100% at 400 °C. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this research, thermoresponsive and conductive fibers with core‐sheath structure were fabricated by coaxial electrospinning. For preparing the spinning sheath solution, poly‐(N‐isopropylacrylamide‐co‐N‐methylolacrylamide) (PNN) copolymer having thermoresponsive and cross‐linkable properties was synthesized by free‐radical polymerization using redox initiators; it was then mixed with the conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at different weight ratios in water. On the other hand, poly(butyl acrylate‐co‐styrene) (PBS) copolymer synthesized by emulsion polymerization was dissolved in chloroform and used as the spinning core solution. After electrospinning, the fibers were treated at 110 °C for 1 h to cross‐link the PNN portion in the sheath for strengthening the fibers. Well‐defined core‐sheath fibers were observed from SEM pictures; the outside and inside (core) diameters were 568 ± 24 and 290 ± 40 nm, respectively, as determined from TEM pictures. The fiber mats were further doped by DMSO to enhance their conductivity. For the fiber mat with the weight ratio of PEDOT:PSS/PNN at 0.20 in the sheath, its surface conductivity could reach 29.4 S/cm. In addition, the fiber mats exhibited thermoresponsive properties that both swelling ratio and electric resistance decreased with temperature. Furthermore, the fiber mats exhibited improved flexibility as evaluated via bending test. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1299–1307  相似文献   

19.
The long term degradation behavior of cotton, linen, and kozo papers was studied to compare changes to the chemical and physical properties with time. The elemental composition, α-content, β-content, γ-content, and lignin content (K number) of the three unaged controls were determined. The papers were then degraded at 90 °C and 50 % relative humidity for several thousand hours. Changes to the pH, carbonyl content, yellowness index (YI), moisture content, molecular weight, and tensile strength with aging were monitored. The general trends in degradation behavior of linen and kozo papers were similar to cotton in that all three showed decreases in pH, molecular weight, and strength as well as increases in carbonyl content and YI during hydrolysis. However, the kinetics of degradation differed between the three papers. The cellulose component of all three papers dominated measured changes to the molecular weight while the presence of hemicellulose in the linen and kozo papers led to unique measured moisture contents, carbonyl group, and YI values relative to cotton after the same amount of degradation had occurred.  相似文献   

20.
Cellulose nanofibers from white and naturally colored cotton fibers   总被引:1,自引:1,他引:0  
Suspensions of white and colored nanofibers were obtained by the acid hydrolysis of white and naturally colored cotton fibers. Possible differences among them in morphology and other characteristics were investigated. The original fibers were subjected to chemical analysis (cellulose, lignin and hemicellulose content), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The nanofibers were analyzed with respect to yield, elemental composition (to assess the presence of sulfur), zeta potential, morphology (by scanning transmission electron microscopy (STEM)) and atomic force microscopy (AFM), crystallinity (XRD) and thermal stability by thermogravimetric analysis in air under dynamic and isothermal temperature conditions. Morphological study of several cotton nanofibers showed a length of 85–225 nm and diameter of 6–18 nm. The micrographs also indicated that there were no significant morphological differences among the nanostructures from different cotton fibers. The main differences found were the slightly higher yield, sulfonation effectiveness and thermal stability under dynamic temperature conditions of the white nanofiber. On the other hand, in isothermal conditions at 180 °C, the colored nanofibers showed a better thermal stability than the white.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号