首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of melting on the excitation of Surface Acoustic Wave (SAW) pulses in silicon is studied both theoretically and experimentally. The developed theory of Rayleigh-type SAW laser-induced thermoelastic excitation in a structure composed of a liquid layer on a solid substrate predicts that the SAW is predominantly generated in the solid phase due to the absence of shear rigidity in a liquid. The characteristic changes in the SAW pulse shape as well as the saturation and even the decrease of the SAW pulse amplitude observed above the melting threshold are explained theoretically to be a result of the decrease of the heat flux into the solid phase as well as due to the decrease of the volume of the solid phase caused by melting. Although the heat flux into the solid phase is decreased both as a consequence of the reflectivity increase and the additional energy losses (latent heat of melting) at the phase transition, it is demonstrated that the influence of reflectivity changes on the SAW pulse is negligible in comparison with the effect of melt-front motion. For laser pulses of 7 ns duration at 355 nm, the threshold value of laser fluence for meltingF m=0.23±0.04 J/cm2 and for the ablationF a=1.3±0.2 J/cm2 were determined experimentally as the points of characteristic changes in the observed SAW pulses.  相似文献   

2.
J. Bok 《Physics letters. A》1981,84(8):448-450
We compute the variation of the melting temperature Tm of silicon, with the density np of electron-hole pairs created by laser illumination: Tm0(1?αnp)2, where α?11 = 8 × 1021 cm?3. A similar formula is given for amorphous silicon and the application to laser annealing of damaged silicon is discussed.  相似文献   

3.
UV-absorbing silicon monoxide (SiO x , x≈1) thin films on fused silica substrates are irradiated by an ArF excimer laser (wavelength 193 nm) in the sub-ablation threshold regime. Multi-pulse irradiation of films with ∼200-nm thickness at a fluence of about 100 mJ/cm2 leads to a significant increase of the UV transmission, indicating the oxidation of SiO x to SiO2. The quality of the obtained films after this laser annealing process depends on the oxygen content of the environment. Irradiation in air at atmospheric pressure leads to the formation of sub-micron-sized oxide particles on top of the film. Structured illumination is applied either to form areas of the film with changed transmission and refractive index, or for the formation of regular particle patterns with sub-micron periods. These processes can be utilized for the fabrication of phase masks or for various types of surface functionalization.  相似文献   

4.
In this study WO x films were deposited by laser ablation of ultra-pure (5N) tungsten trioxide targets onto SiO2 or silicon substrates at 250°C temperature, 100 mTorr oxygen partial pressure and 1×10−5 Torr vacuum. Surface chemical states and compositions of the deposits were determined by X-ray photoelectron spectroscopy. The results showed that deposits in oxygen partial pressure contain W6+ with x∼3.1, while vacuum-deposited films have different W states with various percentage distributions as W4+>W5+>W6+>W0, and x∼1. We used fast electrical resistance measurement as a probe to study the deposition process. Film resistance as a function of deposition time in vacuum revealed some microsecond fluctuations modulated on the time variation curve of electrical resistance. We attribute these data to surface absorption and desorption of oxygen during layer deposition. Finally, the effect of the laser beam on the target’s structure, surface morphology and chemical state was studied. Our results revealed that in spite of structural variation by laser irradiation, the O/W ratio remained about 3.  相似文献   

5.
The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).  相似文献   

6.
This paper deals with the problem of heating a finite slab using laser radiation in relation to the parameters characterizing the laser pulse, namely: qmax(W/m2), the maximum laser power density, t0 the time interval required to reach qmax and td, the pulse time duration. The pulse shape q(t) is suggested in the form: q(t)=βqmax(t/td)(1-(t/td))exp-B(t-t0/td), where β and B are parameters. Fitting with published experimental pulse [Ready JF. Effects due to absorption of laser radiation. J Appl Phys 1965;36:462–68] is made. Fourier series expansion technique is considered to solve the problem. The critical time required to initiate melting tm is estimated for four metallic elements and five semiconductors, namely: Al, Cu, Ag, Au (aluminum, copper, silver, and gold), cadmium sulfide, germanium, silicon, alpha beryllium oxide, and silicon carbide. Five pulses with different characteristic parameters are considered.Computations revealed that the thermal response of the targets is highly affected by qmax and to, while the pulse time duration is less effective in determining the value of tm. Moreover, it is revealed that the relation between tm and the melting temperature for the same laser pulse is nonlinear for the considered targets under the indicated conditions.  相似文献   

7.
We report for the first time to our knowledge on the preparation of colloidal solution of chalcogenide semiconductor As2S3 by laser ablation and the measurements of its nonlinear-optical characteristics using Z-scan method at the wavelength of Nd:YAG laser radiation ( = 1064 nm, = 25 ns). The nonlinear refractive index was measured to be –7.5 × 10–18 m2 W–1. Nonlinear absorption coefficient of chalcogenide solution was measured to be 1 cm GW–1.  相似文献   

8.
Solar cells with an SnO2/CuPc/BP/Ag heterojunction are investigated. When the cell was illuminated with white light (E=750 W/m2) through the SnO2, a photoelectric emf of 0.47 V was generated, the short-circuit current was 5 A/m2, and the maximum efficiency for the absorbed light η=0.66%. The barrier capacitance of the heterojunction Cb=1.3·10−3 F/m2; the width of the barrier in the CuPc and BP is W1=7 nm and W2=27 nm, respectively. The photosensitivity range is 400–800 nm. It is concluded that a heterojunction is present at the boundary of the p-CuPc (Eg=2.0 eV) and n-BP (Eg=0.8 eV). Vologod Polytechnical Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 69–72, January, 1997.  相似文献   

9.
In this work, we report on laser ablation of thermally grown SiO2 layers from silicon wafer substrates, employing an 8–9 ps laser, at 1064 (IR), 532 (VIS) and 355 nm (UV) wavelengths. High-intensity short-pulse laser radiation allows direct absorption in materials with bandgaps higher than the photon energy. However, our experiments show that in the intensity range of our laser pulses (peak intensities of <2×1012 W/cm2) the removal of the SiO2 layer from silicon wafers does not occur by direct absorption in the SiO2 layer. Instead, we find that the layer is removed by a “lift off” mechanism, actuated by the melting and vaporisation of the absorbing silicon substrate. Furthermore, we find that exceeding the Si melting threshold is not sufficient to remove the SiO2 layer. A second threshold exists for breaking of the layer caused by sufficient vapour pressure. For SiO2 layer ablation, we determine layer thickness dependent minimum fluences of 0.7–1.2 J/cm2 for IR, 0.1–0.35 J/cm2 for VIS and 0.2–0.4 J/cm2 for UV wavelength. After correcting the fluences by the reflected laser power, we show that, in contrast to the melting threshold, the threshold for breaking the layer depends on the SiO2 thickness.  相似文献   

10.
Neutral silicon cluster formation in the laser (308 nm) ablation of silicon monoxide was investigated through the analysis of composition and dynamics of the ablation plume under different laser fluence conditions. The neutral species were ionized by a second laser (193 nm) and the positionized species detected by TOF-MS (time-of-flight mass spectrometry). At low laser fluences, plume composition is dominated by SiO; above 0.6 J/cm2 Si, SiO and Si2 have comparable intensity and Sin (n≤7) clusters are observed. Flow velocities and temperatures of the ejected species are nearly mass-independent, indicating that the plume dynamics are close to the strong expansion limit, implying a collisional regime. Through the relation between the estimated values of terminal flow velocity and surface temperature, uT2∝TS, it is found that, at low laser fluences, the surface temperature increases linearly with laser fluence, whereas, at the laser fluence at which Sin clusters are observed, the increase of temperature is below the linear dependence. The population distribution of the ejected Sin provides some indication of a formation mechanism based on condensation. Analogies between the ablation behavior of silicon monoxide and silicon targets are considered. PACS 82.30.Nr; 81.05.Gc; 78.70.-g  相似文献   

11.
Chemical etching of single-crystalline (100)Si induced by pulsed laser irradiation at 308, 423, and 583 nm has been investigated as a function of the laser fluence and C12 pressure. Without laser-induced surface melting, etching requires Cl radicals which are produced only at laser wavelengths below 500 nm. With low laser fluences ((308 nm)<100 mJ/cm2) etching is non-thermal and based on direct interactions between photocarriers and Cl radicals. For fluences which induce surface melting ((308 nm)>440 mJ/cm2) etching is thermally activated. In the intermediate region both thermal and non-thermal mechanisms contribute to the etch rate.  相似文献   

12.
A. K. Nath  V. S. Golubev 《Pramana》1998,51(3-4):463-479
Various criteria for designing high power convective cooled CO2 lasers have been discussed. Considering the saturation intensity, optical damage threshold of the optical resonator components and the small-signal gain, the scaling laws for designing high power CW CO2 lasers have been established. In transverse flow CO2 lasers having discharge of square cross-section, the discharge lengthL and its widthW for a specific laser powerP (Watt) and gas flow velocityV (cm/s) can be given byL = 1.4 x 104 p 1/2 V -1 cms andW = 0.04P 1/2 cms. The optimum transmitivity of the output coupler is found to be almost constant (about 60%), independent of the small signal gain and laser power. In fast axial flow CO2 lasers the gas flow should be divided into several discharge tubes to maintain the flow velocity within sonic limit. The discharge length in this type of laser does not depend explicitly on the laser power, instead it depends on the input power density in the discharge and the gas flow velocity. Various considerations for ensuring better laser beam quality are also discussed.  相似文献   

13.
A pulsed KrF excimer laser of irradiance of about 108 W/cm2 was utilized to synthesize Si nanocrystals on SiO2/Si substrates. The results were compared with that ones obtained by applying low bias voltage to Si(1 0 0) target in order to control the kinetic energy of plasma ions. Glancing incidence X-ray diffraction spectra indicate the presence of silicon crystalline phases, i.e. (1 1 1) and (2 2 0), on SiO2/Si substrates. The average Si nanocrystal size was estimated to be about 45 nm by using the Debye-Scherrer formula. Scanning electron microscopy and atomic force microscopy images showed the presence of nanoparticles of different size and shape. Their distribution exhibits a maximum concentration at 49 nm and a fraction of 14% at 15 nm.  相似文献   

14.
Abstract

The phase transition of orthorhombic sulphur α-S8 to a high pressure amorphous sulphur allotrope (a-S) has been investigated by Raman spectroscopy. The conversion is found to be induced by the absorption of laser light and can be discussed in terms of ring opening followed by cis-trans conversion of the dihedral angle of S8 molecules. Laser energy and transition pressure are correlated due to the pressure tuned red shift of the absorption edge of α-S8. The amorphous (a-S) phase is observed up to 15 GPa at laser intensities below 30μW/μm2 at 514.5 and 488.0 nm. Above this threshold power a-S transforms into a second photo-induced phase (p-S), whose discrete Raman spectrum implies an ordered molecular and crystalline structure. By further increasing pressure crystalline S6 can be created which is found to be the dominant molecular species at pressures above 10 GPa and low temperatures. A phase diagram in the range T < 300 K and p < 15 GPa is also presented.  相似文献   

15.
《Physics letters. A》2020,384(25):126457
The flat hexagonal borophene oxide (B2O) has the highest Li storage capacity among existing two-dimensional materials. Thermal conductivity is an important parameter for the safety of Li-ion batteries. We investigate the lattice thermal conductivity of B2O by solving phonon Boltzmann transport equation combined with the first-principles calculations. We found that the relaxation time approximation remarkably underestimate the thermal conductivity (κ) of monolayer B2O, revealing phonon hydrodynamics characteristic. The κ of B2O from the exact solution of Boltzmann transport equation is 53 W m−1 K−1 and 130 W m−1 K−1 along armchair-direction and zigzag-direction at 300 K, respectively. B2O exhibits strong thermal transport anisotropy due to anisotropic phonon group velocity, obviously larger than that of other borophene allotropes. At room temperature, the phonon mean free path of B2O is about 231 nm and 49 nm along armchair-direction and zigzag-direction, respectively. The highly anisotropic thermal conductivity of B2O offers new possibilities for its applications in thermal management.  相似文献   

16.
The formation of relief features in silicon by a one-step process that avoids resist patterning has been achieved by laser-projection-patterned etching in a chlorine atmosphere. Etching is performed with a pulsed KrF excimer laser (λ=248 nm, τ=15 ns) and deep UV projection optics having an optical resolution of 2 μm. Etching takes place in two steps. Between laser pulses, the silicon surface is covered with a monolayer of chemisorbed chlorine atoms (one Cl per Si). During the laser pulse, surface transient heating at temperatures in excess of 1250 K results in the desorption of the reaction products (mainly SiCl2). At laser energy densities that induce surface melting, this desorption results in a saturated etch. rate of 0.06 nm per pulse, corresponding to the removal of about 0.5 Si monolayer per pulse. At densities below the melting threshold, reduced thermal and possibly a small amount of photochemical etching result in lower etch rates. Projection of a resolution test photomask onto the silicon surface shows that the size of etched features differs from the size of the projected features and strongly depends on the laser energy density. As a result of the heat spread in silicon and of the highly nonlinear character of the etching reaction, etched features smaller than the irradiated area are obtained at all fluences in the range 350–700 mJ/cm2. Etched lines having a width down to about 1.3 μm were produced. Proximity effects due to heat spread were also evidenced for small projected features (<4 μm). The characteristics of the etched patterns are compared with those obtained for GaAs etching in chlorinated gases with the same experimental set-up. Significant differences in pattern resolution for Si and GaAs etching are observed. This variation in resolution is believed to result from the fact that Si has a greater thermal diffusivity than GaAs.  相似文献   

17.
The structure and infrared absorption of cubic silicon carbide (β-SiC) layers produced by the continuous high-dose implantation of carbon ions (C+) into silicon (E=40 keV and D=5×1017 cm−2), followed by the processing of the implanted layers with a high-power nanosecond pulsed ion beam (C+, τ=50 ns, E=300 keV, and W=1.0–1.5 J/cm2), are investigated. Transmission electron microscopy and electron diffraction data indicate the formation of a coarse-grained polycrystalline β-SiC layer with grain sizes of up to 100 nm. A characteristic feature of such a layer is the dendritic surface morphology, which is explained by crystallization from the melt supercooled well below the melting point of β-SiC.  相似文献   

18.
For any two arbitrary positive integers n and m, using them th KdV hierarchy and the (n+m)th KdV hierarchy as building blocks, we are able to construct another integrable hierarchy (referred to as the (n, m)th KdV hierarchy). TheW-algebra associated to the second Hamiltonian structure of the (n, m)th KdV hierarchy (calledW(n, m) algebra) is isomorphic via a Miura map to the direct sum of aW m -algebra, aW n+m -algebra and an additionalU(1) current algebra. In turn, from the latter, we can always construct a representation of aW -algebra.  相似文献   

19.

We report continuous-wave (CW) and passively Q-switched Nd :GdVO4 lasers on 4F3/24I13/2 transition directly pumped by an 880 nm diode laser. A widely investigated Nd :GdVO4 laser at about 1341 nm is operated with a maximum output power of 5.23 W and a slope efficiency of about 30.6%. Using an etalon for wavelength selection, we realize laser emission at about 1344 nm, for the first time to our knowledge, in a Nd :GdVO4 laser, with a maximum output power of 4.19 W and a slope efficiency of 20.1%. Moreover, we achieve simultaneous dual-wavelength lasing at 1341 and 1344 nm with a maximum output power of 2.27 W and a slope efficiency of 13.5%, respectively. Using V3+ :YAG as a saturable absorber, stable Q switching is obtained at about 1341 nm with a maximum average output power of 1.15 W. The pulse width is 52.8 ns at a repetition rate of 279.8 kHz.

  相似文献   

20.
The analysis of the heat spreading in the single-heterostructure GaAs-Ga1-x Al x As laser diode supplied with short current pulses (in the case, however, when the adiabatic approximation is no longer valid) at room temperature is presented in this paper. Relations are derived, describing the time-dependent temperature rise within the volume of the laser diode. The calculations are carried out for a typical SH laser diode. It turns out that in the duration of the short current pulses (t I=200 ns,j=1.5 × 104A cm–2) the increase in junction temperature of the typical SH laser diode amounts to about 6.1 K. This increase leads to an increase of about 9% in the threshold current, to a decrease of about 18% in the laser radiation intensity, and to a shift of the spontaneous radiation band and of the stimulated radiation modes of about 1.9 nm and 0.22 nm, respectively, during each current pulse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号