首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct, sensitive, simple and practical method for simultaneous determination of amino acids and carbohydrates by anion-exchange chromatography with integrated pulsed amperometric detection was developed. The retention behavior of amino acids and carbohydrates on the anion-exchange column and the detection of amino acids and carbohydrates at different integrated pulsed amperometric detection waveforms were investigated. The optimized gradient eluent conditions for analysis of 17 amino acids and nine carbohydrates were obtained. Separation time was 100 min. Detection limits for amino acids and carbohydrates were 5.2-207.1 nM under injection volume of 25 microl. The RSDs of peak area were 1.2-3.3%. The calibration graphs of peak area for the analytes were linear over about three orders of magnitude with a correlation coefficient of 0.9950-0.9999. The method was applied to determine amino acids and carbohydrates in a liquid condiment with satisfactory results.  相似文献   

2.
A simple accurate method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions using high-performance anion-exchange chromatography with integrated pulsed amperometric detection is described. In contrast to most conventional methods, the analysis requires neither pre- or post-column derivatization, nor oxidation of the sample. It consists of hydrolysis (6.0 M hydrochloric acid solution at 110 °C for 24 h), evaporation of hydrolyzates (110 °C), and chromatographic separation of the liberated amino acids. Correction factors (f) accounted for incomplete cleavage of peptide bonds involving Val (f = 1.07) and Ile (f = 1.13) after hydrolysis for 24 h and for Ser (f = 1.32) losses during evaporation. Gradient conditions including an extra eluent (0.1 M acetic acid solution) allowed multiple sequential sample analyses without risk of Glu contamination on the anion-exchange column. While gluten amino acid compositions by the present method were mostly comparable to those obtained by a conventional method involving oxidation, acid hydrolysis and post-column ninhydrin derivatization, the latter method underestimated Tyr, Val and Ile levels. Results for the other amino acids obtained by the different methods were linearly correlated (r > 0.99, slope = 1.03).  相似文献   

3.
4.
Speciation analysis of selenomethylcysteine (SeMeCys), selenomethionine (SeMet) and selenocystine (SeCys) has been performed using a direct amino acid analysis method with high-performance anion-exchange chromatography (HPAEC) coupled with integrated pulsed amperometric detection (IPAD). Three selenoamino acids could be baseline-separated from 19 amino acids using gradient elution conditions for amino acids and determined under new six-potential waveform. Detection limits for SeMeCys, SeMet and SeCys were 0.25, 1 and 20 microg/L (25 microL injection, 10 times of the baseline noise), respectively. The relative standard deviations (RSDs) of 200 microg/L SeMeCys, SeMet and SeCys were 3.1, 4.1 and 2.8%, respectively (n=9, 25 microL injection). The proposed method has been applied for determination of selenoamino acids in extracts of garlic and selenious yeast granule samples. No selenoamino acids were found in garlic. Both SeMet and SeCys were detected in selenious yeast tablet with the content of 45 and 129 microg Se/g, respectively. Selenoamino acids standards were spiked in garlic and yeast granule samples and the recovery ranged from 90 to 106%.  相似文献   

5.
High-performance anion-exchange chromatography (HPAC) was used for the determination of aminosaccharides in microbial polymers, chitin, animal waste, sewage sludge, plant residues and soil. The aminosaccharides, galactosamine, mannosamine and glucosamine were separated on a strong anion-exchange column with 1OmM sodium hydroxide as the eluent and determined by pulsed amperometric detection (PAD). The HPAC-PAD methodology was compared with high-performance liquid chromatography (HPLC) with refractive index detection (RI) in terms of selectivity and sensitivity for aminosaccharides. The results indicate that HPAC-PAD required less sample preparation, and was more precise and nearly two orders of magnitude more sensitive than HPLC-RI. HPAC-PAD was not subject to matrix interferences and was highly selective for aminosaccharides. More than 3% of the total nitrogen in alfalfa, and 20% of that in straw, was found to be present as aminosaccharides.  相似文献   

6.
Carnosine (beta-alanyl-L-histidine) is a dipeptide regarded as an important molecular marker of the presence of processed animal proteins including meat and bone meal in animal feed. For its identification and quantification a sensitive and selective method by high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD) was developed. The assay is based on isocratic elution with 100 mM NaOH as the mobile phase. Interferences of real matrices were efficiently removed; carnosine could be determined at the concentration ranges 0.1-100 microM with a rather low detection limit of 0.23 ng. Unlike feeds for dogs and cats, no carnosine peak was observed in all examined feeds for ruminants. The good analytical characteristics allowed camosine determination down to 5 microg/g of feed.  相似文献   

7.
Solutes analysed with LC-MS are characterised by their retention times and mass spectra, and quantified by the intensities measured. This highly selective information can be extracted by multiway modelling. However, for full use and interpretability it is necessary that the assumptions made for the model are valid. For PARAFAC modelling, the assumption is a trilinear data structure. With LC-MS, several factors, e.g. non-linear detector response and ionisation suppression may introduce deviations from trilinearity. The single largest problem, however, is the retention time shifts not related to the true sample variations. In this paper, a time warping algorithm for alignment of LC-MS data in the chromatographic direction has been examined. Several refinements have been implemented and the features are demonstrated for both simulated and real data. With moderate time shifts present in the data, pre-processing with this algorithm yields approximately trilinear data for which reasonable models can be made.  相似文献   

8.
The advantages of the high selectivity of high-performance anion-exchange chromatography (HPAEC) and the sensitive response of taurine at a gold electrode with integrated pulsed amperometric detection (IPAD) have been combined, in order to establish a new analytical method for its determination in real matrices. Potential-time settings of the potential waveform were optimized in order to get the highest amperometric response. The separation of taurine in milk samples was achieved using an alkaline eluent (100 mM NaOH) containing 1 mM Ba(OAc)2 and a column temperature of 15 °C. The inherent merits of using a barium-modified eluent, in terms of taurine separation and detection, are demonstrated. The enhancement in sensitivity under these experimental conditions makes it suitable for taurine determination in milk. Indeed, this method allows high recovery of taurine and satisfies the necessary requirements with respect to accuracy, repeatability and sensitivity with a detection limit of 50 nmol/L, which corresponds to 2.5 pmol. The taurine content in milk samples of some common mammals was evaluated, including human milk. In goats milk, the taurine content ranged from 46 to 91 mg/L, whereas human and buffalo milk samples exhibited an average content of 18 mg/L and 23 mg/L, respectively.  相似文献   

9.
As taurine is a very important compound involved in a large number of metabolic processes, it is naturally present in the mammal tissues and is often deliberately added in some foods as a fortifying component. A detailed knowledge of taurine metabolic roles in biological systems can be obtained only if a sensitive, reliable and rapid analytical method is available. This article describes the successful application of high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD) for taurine determination in egg white and yolk samples, as well extracts of human serum and urine. Applications are shown for determination of taurine in soft drinks and pharmaceutical preparations where the taurine content was evaluated by standard additions. These results were achieved without prior derivatization of taurine.  相似文献   

10.
In this paper, a sensitive, simple and direct method for simultaneous determination of glucose, ribose, isomaltose and maltose in serum sample by high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection was developed. The four target analytes were easily and completely separated on an anion-exchange column at a flow-rate of 0.25 mL/min by binary step gradient elution in about 16 min and the two eluents were deionized water and 500 mM sodium hydroxide, respectively. The separated four analytes were detected directly by using a gold electrode and quadruple-potential waveform integrated pulsed amperometry without derivatization. Under the optimized conditions, when the injection volume was 25 microL, the detection limits (signal-to-noise ratio equal to 3) for glucose, ribose, isomaltose and maltose were 0.92, 7.50, 12.9 and 10.3 ng/mL, respectively. The calibration graphs of peak area for the four analytes were linear over two to three orders of magnitude with correlation coefficients greater than 0.998. R.S.D. of peak areas of the four analytes for five determinations were no more than 5.6%. The analytical method had been applied to the determination of glucose, ribose, isomaltose and maltose in real serum samples and good results with low relative standard deviation not more than 5.3% were obtained. The accuracy of the proposed method was tested by recovery measurements on spiked samples and good recovery results (98.1-107.9%) were obtained.  相似文献   

11.
High-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) under alkaline conditions (pH 9-13) separates aminosaccharides, neutral saccharides and glycuronic acids based upon their molecular size, saccharide composition and glycosidic linkages. Carbohydrates were extracted by utilizing 0.5 M H2SO4 (neutral monosaccharides), 0.25 M H2SO4 coupled with enzyme catalysis (glycuronic acids) and 3 M H2SO4 (aminosaccharides). Solid-phase extraction with strong cation and strong anion resins was used to partition the cationic aminosaccharides and anionic glycuronic acids and to deionize acid extracts for neutral saccharides. Separation was conducted on a medium-capacity anion-exchange column (36 mequiv.) utilizing sodium hydroxide (5-200 mM and sodium acetate (0-250 mM) as the mobile phase. The saccharides were detected by oxidation at a gold working electrode with triple-pulsed amperometry. HPAEC-PAD was found superior to high-performance liquid chromatography with refractive index (RI) detection for neutral monosaccharides and aminosaccharides and to low-wavelength UV detection for glycuronic acids in terms of resolution and sensitivity. HPAEC-PAD was not subject to interferences as was the case for low UV detection (210 nm) or RI analyses and was highly selective for mono- and aminosaccharides and glycuronic acids. The use of HPAEC-PAD was applied for the determination of the saccharide composition of organic materials (plant residues, animal wastes and sewage sludge), microbial polymers and soil.  相似文献   

12.
Phytosiderophores of the mugineic acid family are separated by anion-exchange HPLC using NaOH gradient elution. Separation of mugineic acid (MA), 2'-deoxymugineic acid (DMA), 3-hydroxymugineic acid (HMA) and 3-epi-hydroxymugineic acid (epi-HMA) is obtained within 15 min. Detection of the underivatised phytosiderophores is performed using pulsed amperometric detection (PAD) at pH 13. The sensitivity of the detection increases in the order DMA < MA < HMA < epi-HMA and respective detection limits of 5 microM (DMA), 1 microM (MA) and < 0.5 microM (HMA, epi-HMA) are achieved. PAD is discussed in comparison with the well-established fluorimetric detection method after post-column derivatisation with ortho-phthaldialdehyde. The main advantage of PAD is the simplicity of the method (no derivatisation) and the high sensitivity for hydroxylated mugineic acids. The method is used for the determination of phytosiderophores in root washings of iron-deficient and non-deficient wheat and barley plants.  相似文献   

13.
Summary Acid hydrolysis (0.25M H2SO4) coupled with enzyme catalysis (pectolyase and β-D-glucuronidase) were employed to extract galacturonic and glucuronic acids from microbial polysaccharides, plant residues, animal wastes, sewage sludge and soil. The glycuronic acids were separated by high-performance anion chromatography (HPAC) on a strong anion-exchange column using 0.1M sodium hydroxide with 0.25M sodium acetate as the mobile phase and determined by pulsed amperometric detection (PAD). HPAC-PAD was found to be superior to high-performance liquid chromatography with ultra-violet (UV) detection in terms of resolution and sensitivity of glycuronic acids. HPAC-PAD was not subject to interferences present with low UV detection (210 nm) and was highly selective for glycuronic acids. Enzymatic hydrolysis after treatment with mild acid (0.25M H2SO4) released galacturonic acids from orange peel and pectin, while glucuronic acid was released from Acacia powder. Large amounts of glycuronic acids were also extracted from plant materials. Low levels of uronic acids were detected in poultry manure, sewage sludge and organic-amended soils.  相似文献   

14.
15.
An accurate carbohydrate analysis method, namely high-performance anion-exchange chromatography with pulsed amperometric detection was successfully applied to the study of sucrose hydrolysis under enzymatic (baker's yeast invertase) conditions. The hydrolysis was monitored by determining sucrose degradation and the corresponding formation of D-glucose, D-fructose and five intermediate fructans using a CarboPac PA-100 (Dionex) analytical anion-exchange column. Highly reproducible results were obtained. The unknown fructans were collected from a semi-preparative CarboPac PA-100 (Dionex) column, neutralized and then desalted on a column containing mixed bed resin AG 501-X8 (D) before identification of the chemical structure. This procedure permitted us to obtain about 20 microg of pure product which is not enough for NMR analysis. Detailed GC-MS analytical data of the methylated compounds indicated that these oligosaccharides were beta-D-Fru-(2 --> 1)-beta-D-Fru-(2 --> 1)-alpha-D-glucopyranoside (1-kestose), beta-D-Fru-(2 --> 6)-alpha-D-glucopyranoside (6-beta fructofuranosylglucose), beta-D-Fru-(2 --> 1)-beta-D-fructofuranoside (inulobiose), beta-D-Fru-(2 --> 6)-beta-D-Fru-(2 --> 1)-alpha-D-glucopyranoside (6-kestose) and beta-D-Fru-(2 --> 6)-alpha-D-Glc-(1 --> 2)-beta-D-fructofuranoside (neokestose) coeluating with a disaccharide.  相似文献   

16.
High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC–PAD) is a widely used technique to study the chain length distribution of amylopectin. The chromatograms, however, do not directly reflect this distribution, since the PAD response changes with the degree of polymerization. In this study, waxy maize starch was debranched and fractionated on a Bio-Gel P-6 column and the response factors for maltosaccharides with DP 3–65 were determined. The detector response per μg glucan chains was shown to decrease considerably for DP 3–7 while the curve leveled out for DP larger than 15.  相似文献   

17.
We developed a new non-derivatization analytical method for the determination of galactose in the diagnosis of galactosemia by high-performance anion-exchange chromatography (HPAEC)-pulsed amperometric detection (PAD). With an anion-exchange column, the analytes were separated efficiently using 3mM NaOH containing 1mM NaOAc, and 200mM NaOH was added for post-column reagent. The limit of detection (S/N=3) and limit of quantification (S/N=10) for galactose were 25ng/mL and 83ng/mL, respectively. Linear dynamic range was from 4.67mg/dL to 53.46mg/dL (r(2)=0.9999). The mean recovery of galactose for intra-, inter-day assays were found to be of satisfactory results (98.14-101.42%).  相似文献   

18.
This article reviews recent advances of carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Starting from the paper of Dennis C. Johnson [1] in which the great analytical promise of such a technique was anticipated, a multitude of exciting new research possibilities have recently emerged. The great attractiveness of high-performance anion-exchange chromatography is largely due to its compatibility with such a sensitive, selective and reliable detection method as pulsed amperometry. This very good match between liquid chromatography and electrochemical detection has allowed the determination of carbohydrates in a variety of complex matrices, for instance, foods, beverages, diary and biotechnological products, vegetal tissues, and also in the area of clinical diagnostics. For this reason, the introduction of HPAEC-PAD into regulated methods is becoming increasingly accepted. A comprehensive collection of applications to carbohydrates and samples of interest is given, with special focus on the separation of closely related sugar compounds using dilute alkaline eluents. Advances in pulsed potential waveforms are also discussed, and a comparison with other liquid chromatographic methods addressed. 2-keto-3-deoxy-D-glycero-D-galactonononic acid; KDO, 2-keto-3-deoxyoctulosonic acid; FOS, fructooligosaccharides; GF5, GF6, and GF7, oligofructans: Hib, Haemophilus influenzae type b; FAB, fast atom bombardment; ESI, electrospray ionization; MALDI-TOF, matrix assisted laser desorption ionization-time of flight.  相似文献   

19.
This article reviews recent advances of carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Starting from the paper of Dennis C. Johnson [1] in which the great analytical promise of such a technique was anticipated, a multitude of exciting new research possibilities have recently emerged. The great attractiveness of high-performance anion-exchange chromatography is largely due to its compatibility with such a sensitive, selective and reliable detection method as pulsed amperometry. This very good match between liquid chromatography and electrochemical detection has allowed the determination of carbohydrates in a variety of complex matrices, for instance, foods, beverages, diary and biotechnological products, vegetal tissues, and also in the area of clinical diagnostics. For this reason, the introduction of HPAEC-PAD into regulated methods is becoming increasingly accepted. A comprehensive collection of applications to carbohydrates and samples of interest is given, with special focus on the separation of closely related sugar compounds using dilute alkaline eluents. Advances in pulsed potential waveforms are also discussed, and a comparison with other liquid chromatographic methods addressed.  相似文献   

20.
建立了高效阴离子交换色谱积分脉冲安培检测器同时分离并测定注射液中18种常见氨基酸、氨基己酸和牛磺酸含量的方法. 注射液用20 mg/L的NaN3溶液稀释1000倍, 经0.22 μm尼龙膜过滤后直接进样分析. 以一定浓度的NaOH和NaAc溶液为淋洗液, 选择合适的梯度淋洗条件, 20种氨基酸在AminoPac PA10阴离子交换色谱柱上在30min内很好地分离, 并用脉冲安培检测器进行了测定. 氨基酸的检出限在0.14~3.81 pmol (25 μL进样, 峰面积定量).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号