共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction of TaCl(NMe2)4 (1) with KTp* [Tp* = tris(3,5-dimethylpyrazolyl)borohydride] yields two products: Tp*Ta(NMe2)4 (2), in which one N atom of the Tp* ligand binds to Ta, and [Tp*Ta(NMe2)4]· 2KTp* (3) where three N atoms of the Tp* ligand in [Tp*Ta(NMe2)4] (2a) bind to Ta. Addition of excess 1 to 3 did not exclude KTp*. Further reaction of 2 with oxygen affords Tp*BH(NMe2) (4). TpTa(NMe2)4 (5) has been synthesized by a similar procedure through the reaction of 1 with TpK [Tp = tris(pyrazolyl)borohydride... 相似文献
2.
Römer R Gradert C Bannwarth A Peters G Näther C Tuczek F 《Dalton transactions (Cambridge, England : 2003)》2011,40(13):3229-3236
A new synthetic pathway to Chatt-type Mo(0) and W(0) bis(dinitrogen) complexes with the ligand prP(4) is presented (prP(4) is a linear tetraphos ligand with two ethylene bridges and a central propylene bridge). The synthesis starts from MoCl(5) and WCl(6), respectively, employing Mg as reductant. Whereas the electrochemical reduction of the oxido-iodido-molybdenum(IV) complex [Mo(O)I(meso-prP(4)](+) (1) only gave trans-[Mo(N(2))(2)(meso-prP(4))] (2a; R?mer et al., Eur. J. Inorg. Chem.2008, 3258), the direct synthesis under normal conditions affords both trans and cis complexes 2a and 2b. The reaction products are characterised by vibrational and NMR spectroscopy. Moreover, a single-crystal X-ray structure determination of cis-α-[Mo(N(2))(2)(rac-prP(4))] (2b) is performed. In contrast to the trans bis(dinitrogen)molybdenum(0) complex 2a supported by the meso prP(4) ligand the corresponding cis-complex is exclusively coordinated by the rac isomer of prP(4). The reactivity of 2 with acids is investigated as well, leading to the NNH(2) complex [MoF(NNH(2))(meso-prP(4))]BF(4) (15). Analogous results are obtained with the tungsten complexes. 相似文献
3.
Ohashi M Konkol M Del Rosal I Poteau R Maron L Okuda J 《Journal of the American Chemical Society》2008,130(22):6920-6921
A trinuclear rare-earth metal hydride complex was synthesized from the dialkyl complex supported by a monoanionic [NNNN] macrocycle and shown to catalyze the hydrosilylation of olefins efficiently. 相似文献
4.
Chang CJ Yang CH Chen K Chi Y Shu CF Ho ML Yeh YS Chou PT 《Dalton transactions (Cambridge, England : 2003)》2007,(19):1881-1890
We report the preparation of a series of new heteroleptic Ir(III) metal complexes chelated by two cyclometalated 1-(2,4-difluorophenyl)pyrazole ligands (dfpz)H and a third ancillary bidentate ligand (L=X). Such an intricate design lies in a core concept that the cyclometalated dfpz ligands always warrant a greater pi pi* gap in these series of iridium complexes. Accordingly, the lowest one-electron excitation would accommodate the pi* orbital of the ancillary L=X ligands, the functionalization of which is then exploited to fine-tune the phosphorescent emission wavelengths. Amongst the L=X ligands designed, three classes (series 1-3) can be categorized, and remarkable bathochromic shifts of phosphorescence were observed by (i) replacing the 2-benzoxazol-2-yl substituent (1a) with the 2-benzothiazol-2-yl group (1b) in the phenolate complexes, (ii) converting the pyridyl group (2a) to the pyrazolyl group (2b) and even to the isoquinolyl group (2c) in the pyrazolate complexes and (iii) extending the pi-conjugation of the benzimidazolate ligand from 3a to 3b. Single-crystal X-ray diffraction study on complex [(dfpz)Ir(bzpz)] (2b) was conducted to confirm their general molecular architectures. Complex 2b was also used as a representative example for fabrication of multilayered, green-emitting phosphorescent OLEDs using the direct thermal evaporation technique. 相似文献
5.
A series of iridium complexes ( 1 – 5 ), which consist of two 2‐(2,4‐difluorophenyl)pyridine (dfppy)‐based primary ligands and one pyridinylphosphinate ancillary ligand, have been investigated theoretically for screening highly efficient deep‐blue light‐emitting materials. Compared with the reported dfppy‐based emitter 1 , the designed iridium complexes 3 – 5 with the introduction of a stronger electron‐withdrawing (–CN, –CF3 , or o‐carborane) group and a bulky electron‐donating (tert‐butyl) group in dfppy ligands can be achieved to display the emission peaks at 443, 442, and 447 nm, respectively. The electronic structures, absorption and emission properties, radiative and nonradiative processes of their excited states, and charge injection and transport properties of the iridium complexes are analyzed in detail. The calculated results show that designed iridium complexes have comparable radiative and nonradiative rate constants with 1 , and are expected to have similar quantum efficiency with 1 . Meanwhile, these designed complexes keep the advantages of the charge transport properties of 1 , indicating that they are potential iridium complexes for efficient deep‐blue phosphorescence. This work provides more in‐depth understanding the structure–property relationship of dfppy‐based iridium complexes, and shed lights on molecular design for deep‐blue phosphorescent metal complexes. 相似文献
6.
This work focuses on the systematic investigation of the influences of pyrimidine-based thioether ligand geometries and counteranions on the overall molecular architectures. A N-containing heterocyclic dithioether ligand 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (L1) and three structurally related isomeric bis(2-pyrimidinesulfanylmethyl)benzene (L2-L4) ligands have been prepared. On the basis of the self-assembly of CuX (X = I, Br, Cl, SCN, or CN) and the four structurally related flexible dithioether ligands, we have synthesized and characterized 10 new metal-organic entities, Cu4(L1)2I4 1, Cu4(L1)2Br4 2, [Cu2(L2)2I2.CH3CN]n 3, [Cu(L3)I]n 4, [Cu(L3)Br]n 5, [Cu(L3)CN]n 6, [Cu(L4)CN]n 7, [Cu2(L4)I2]n 8, [Cu2(L4)(SCN)2]n 9, and [[Cu6I5(L4)3](BF4).H2O]n 10, by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that the 10 Cu(I) complexes possess an increasing dimensionality from 0D (1 and 2) to 1D (3-5) to 2D (6-9) to 3D (10), which indicates that the ligand geometry takes an essential role in the framework formation of the Cu(I) complexes. The influence of counteranions and pi-pi weak interactions on the formation and dimensionality of these coordination polymers has also been explored. In addition, the photoluminescence properties of Cu(I) coordination polymers 4-10 in the solid state have been studied. 相似文献
7.
Marcin Palusiak Bogna Rudolf Arno Pfitzner S?awomir J. Grabowski 《Journal of organometallic chemistry》2006,691(15):3232-3238
The crystal structures of (η5-C5H5)W(CO)3(η1-N-maleimidato) and (η5-C5H5)Fe(CO)2(η1-N-maleimidato) complexes were determined by single crystal X-ray diffraction. The molecular geometries of both structures are compared with those of the Mo analog of the W complex and ethyl-N-maleimide in order to find a relation between the geometrical features and the rate constants of the addition reaction of the sulfhydryl group of biomolecules to the ethylenic bond of the maleimidato fragment. For a deeper insight into the problem DFT calculation were performed. An analysis of atomic charges, using the CHELPG scheme, and of theoretical electron density function, using the AIM theory, was performed. In the (η5-C5H5)W(CO)3(η1-N-maleimidato), likewise in its Mo analog, the carbonyl?carbonyl interaction was found both for experimental and calculated structures. It is probably the first approach to explain this type of intramolecular interactions acting in organometallic compounds. This interaction can play the essential role in the reaction mechanism of nucleophilic addition to the maleimidato moiety. The AIM investigations indicate also the differences in the character of bonding between the η-N-maleimidato ligand and the central metal atom. 相似文献
8.
Linear nickel nitrosyl compounds supported by tridentate nitrogen and selenium ligands, namely the tris(3,5-dimethylpyrazolyl)hydroborato and tris(2-seleno-1-mesitylimidazolyl)hydroborato complexes, [TpMe2]NiNO and [TseMes]NiNO, have been synthesized and structurally characterized by X-ray diffraction. Computational studies demonstrate that the linear nitrosyl ligand behaves as a trivalent X3 ligand such that the Ni-N interaction has multiple bond character. 相似文献
9.
Zhe Tang 《Journal of Coordination Chemistry》2017,70(3):417-430
The structures and mechanisms for hydrogen abstraction from isopropylbenzene for four high-valence complexes, cis-β-[FeIV(O)(BQCN)]2+ (Fe-2b and Fe-2b-2) and cis-β-[RuIV(O)(BQCN)]2+ (Ru-2b and Ru-2b-2) (BQCN = N,N′-dimethyl-N,N′-bis(8-quinolyl)-cyclohexanediamine), were investigated using density functional theory. Of the two iron complexes, Fe-2b-2 has more exposed FeO units than Fe-2b, with iron being further out of the equatorial plane because of the steric interaction of the same ligand topologies with the iron-oxo group trans to a quinolyl or amine nitrogen. The contribution of BQCN to Fe-2b is higher than the contribution to Fe-2b-2 as shown by the density-of-states spectra. The iron isomers can abstract hydrogen from isopropylbenzene via two-state reactivity patterns, whereas the ruthenium isomers react with isopropylbenzene via a single-state mechanism. In the gas phase, the relative reactivity exhibits the trend Fe-2b > Fe-2b-2, whereas with the addition of the ZPE correction and the SMD model, the relative reactivity follows Fe-2b-2 > Fe-2b. For the ruthenium complexes, the relative reactivity follows the trend Ru-2b-2 > Ru-2b in both the gas phase and solvent. Thus, the same ligand topologies with the metal-oxo group trans to a different nitrogen affect the reactivities of the iron and ruthenium complexes. 相似文献
10.
本文设计合成了一种新的C3对称性含膦三足体衍生物N’,N’’,N’’’-三(亚磷酸三乙酯)缩氨三乙酸(L=N’,N’’,N’’’-三(亚磷酸三乙酯)缩氨三乙酸)及其Eu(Ⅲ)配合物。用1HNMR、13CNMR、红外光谱、元素分析、差热-热重及紫外光谱对其组成和结构进行分析和表征。结果表明,三足体衍生物与稀土苦味酸盐(Eu(pic)3?6H2O形成了1:1型配合物Eu(pic)3L。综合运用紫外-可见吸收光谱法、荧光光谱法和循环伏安法研究了Eu(pic)3 L与小牛胸腺DNA之间的结合模式。通过紫外、EB探针及循环伏安得出了配合物Eu(pic)3L与DNA之间以嵌插形式发生相互作用。将该配合物作为杂交探针,对其在DNA电化学传感器方面的应用进行了探讨。结果发现,该配合物在修饰单链DNA的电极检测作用下,无明显的电化学信号响应。而当将其用于检测杂交双链DNA时,出现了明显信号,并且该配合物的DNA传感器对互补序列、错配序列及非互补序列都有良好的选择作用。 相似文献
11.
12.
MacLachlan EA Hess FM Patrick BO Fryzuk MD 《Journal of the American Chemical Society》2007,129(35):10895-10905
A new dinitrogen complex, deep blue-green {[NPN]*Zr(THF)}(2)(mu-eta(2):eta(2)-N(2)) ([NPN]* = {[N-(2,4,6-Me(3)C(6)H(2))(2-N-5-MeC(6)H(3))](2)PPh}), was prepared in high yield by the reduction of [NPN]*ZrCl(2) with 2.2 equiv of KC(8) in THF under N(2). The solid-state molecular structure shows that N(2) is strongly activated (N-N bond length: 1.503(6) A) and bound side-on to two Zr atoms. Coordinated THF can be readily replaced by adding pyridine (py) or PMe(2)R (R = Me, Ph) to the complex to obtain {[NPN]*Zr(py)}(2)(mu-eta(2):eta(2)-N(2)) or {[NPN]*Zr(PMe(2)R)}(mu-eta(2):eta(2)-N(2)){Zr[NPN]*} in high yield. X-ray diffraction experiments show that the N(2) moiety is strongly activated and remains side-on bound to Zr for the py and PMe(2)Ph adducts; interestingly, only one PMe(2)Ph coordinates to the Zr(2)N(2) unit. {[NPN]*Zr(PMe(2)R)}(mu-eta(2):eta(2)-N(2)){Zr[NPN]*} reacts slowly with H(2) to provide {[NPN]*Zr(PMe(2)R)}(mu-H)(mu-eta(2):eta(2)-N(2)H){Zr[NPN]*}, as determined by isotopic labeling, and multinuclear NMR spectroscopy. The THF adduct does not react with H(2) even after an extended period, whereas the pyridine adduct does undergo a reaction with H(2), but to a mixture of products. 相似文献
13.
Alain Mallard Corine Simonnet-Jégat Hélène Lavanant Jérôme Marrot Francis Sécheresse 《Transition Metal Chemistry》2008,33(2):143-152
The reaction of DMA (C2(CO2Me)2) with MoS42−, WS42−, and VS43− led to six dithiolene compounds. (NEt4)2[Mo2(X)2(μ-S) 2(η2-S2C2(CO2Me)2)2] 1, (X = O or S), (NEt4)2[V(η2-S2C2(CO2Me)2)3] 2a, (NEt4)2[V(O)(η2-S2C2(CO2Me)2)2] 2b, (NEt4)2[W2(S)2(μ-S)2(η2-S2C2(CO2Me)2)2] 3, (NEt4)2[W(O)(η2-S2C2(CO2Me)2)2] 4 and (NEt4)2[W2(μ-S)2(η2 -S2C2(CO2Me)2)4] 5 were isolated in the solid state. The structures of 2a, 3, 4 and 5 were determined by single crystal X-ray diffraction study. The compounds 1 and 2b were characterised in solution by ESMS (Electrospray Mass Spectrometry) and in the solid state by IR spectroscopy. ESMS data
also allowed proposal of a reaction scheme which rationalizes the formation of the different species present in solution. 相似文献
14.
Bayly SR Xu Z Patrick BO Rettig SJ Pink M Thompson RC Orvig C 《Inorganic chemistry》2003,42(5):1576-1583
The synthesis and physical characterization of a series of lanthanide (Ln(III)) and nickel (Ni(II)) mixed trimetallic complexes with the heptadentate (N(4)O(3)) amine phenol ligand H(3)trn [tris(2'-hydroxybenzylaminoethyl)amine] has been accomplished in order to extend our understanding of how amine phenol ligands can be used to coaggregate d- and f-block metal ions and to investigate further the magnetic interaction between these ions. The one-pot reaction in methanol of stoichiometric amounts of H(3)trn with NiX(2).6H(2)O (X = ClO(4), NO(3)) followed by addition of the corresponding LnX(3).6H(2)O salt, and then base, produces complexes of the general formula [LnNi(2)(trn)(2)]X.nH(2)O. The complexes were characterized by a variety of analytical techniques. Crystals of five of the complexes were grown from methanol solutions and their structures were determined by X-ray analysis: [PrNi(2)(trn)(2)(CH(3)OH)]ClO(4).4CH(3)OH.H(2)O, [SmNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.2H(2)O, [TbNi(2)(trn)(2)(CH(3)OH)]NO(3).4CH(3)OH.3H(2)O, [ErNi(2)(trn)(2)(CH(3)OH)]NO(3).6CH(3)OH, and [LuNi(2)(trn)(2)(CH(3)OH)]NO(3).4.5CH(3)OH.1.5H(2)O. The [LnNi(2)(trn)(2)(CH(3)OH)](+) complex cation consists of two octahedral Ni(II) ions, each of which is encapsulated by the ligand trn(3)(-) in an N(4)O(2) coordination sphere with one phenolate O atom not bound to Ni(II). Each [Ni(trn)](-) unit acts as a tridentate ligand toward the Ln(III) ion via two bridging and one nonbridging phenolate donors. Remarkably, in all of the structurally characterized complexes, Ln(III) is seven-coordinate and has a flattened pentagonal bipyramidal geometry. Such uniform coordination behavior along the whole lanthanide series is rare and can perhaps be attributed to a mismatch between the geometric requirements of the bridging and nonbridging phenolate donors. Magnetic studies indicate that ferromagnetic exchange occurs in the Ni(II)/Ln(II) complexes where Ln = Gd, Tb, Dy, Ho, or Er. 相似文献
15.
16.
17.
The preparation of divalent Mo complexes of dipyrrolide dianions was carried out by reacting Mo(2)(acetate)(4) with the dipotassium salts of Ph(2)C(2-C(4)H(3)NH)(2) and 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine. The two reactions respectively afforded the diamagnetic [[Ph(2)C(C(4)H(3)N)(2)](2)Mo(2)(OAc)(2)[K(THF)(3)][K(THF)]].THF (1) and [[(2-C(5)H(4) N)(CH(3))C(2-C(4)H(3)N)(2)]Mo(OAc)[K(THF)]](2).THF (2). Both compounds retained two acetate units in the dimetallic structure. Conversely, the reaction of Me(8)Mo(2)Li(4)(THF)(4) with Et(2)C(2-C(4)H(3)NH)(2) afforded the paramagnetic dimer [[Et(2)C(C(4)H(3)N)(2)](4)Mo(2)Li(2)][Li(THF)(4)](2).0.5THF (3). The paramagnetism is most likely caused by the 45 degree rotation of the two Mo(dipyrrolide) units with respect to each other and which, in turn, is caused by the presence of two lithium cations in the molecular structure. 相似文献
18.
Godbole MD Roubeau O Mills AM Kooijman H Spek AL Bouwman E 《Inorganic chemistry》2006,45(17):6713-6722
The three novel clusters [Mn6O4(OMe)2(OAc)4(Mesalim)4] (3), [Mn8O2(OH)2(OMe)12(OAc)2(Mesalim)4] (4), and [Fe10O4(OMe)14Cl2(Mesalim)6] (5) have been synthesized from a simple bidentate ligand HMesalim (HMesalim = methyl salicylimidate). Starting from the mononuclear complex [Mn(Mesalim)2(OAc)(MeOH)].MeOH (1), either the hexanuclear complex 3 or the octanuclear complex 4 is obtained after recrystallization, depending upon the reaction conditions and solvents used. Similarly, starting from the purple-colored mononuclear complex [Fe(Mesalim)2Cl] (2), the orange-colored decanuclear iron(III) cluster 5 has been obtained upon recrystallization from methanol. Complex 3, which could also be prepared directly from manganese acetate and the ligand, has a face-sharing double-cubane [Mn6O6] core, unique in transition metal chemistry. Compounds 4 and 5 are composed of [M3O4] partial cubanes. All complexes belong to a class of oxo-bridged cubic close-packed molecular clusters resembling the metal oxide/hydroxide ores. Complex 4 exhibits intramolecular ferromagnetic interactions, as evidenced from dc magnetic susceptibility studies (1.8-300 K), resulting in a high-spin ground state, probably with S(T) = 8. Complex 4 displays single molecule magnet behavior as indicated by frequency and temperature dependences of its ac susceptibility. An Arrhenius plot gave relatively large experimental activation energy of 36.0 K. The magnetic properties of complexes 3 and 5 are dominated by antiferromagnetic interactions leading to zero-spin ground states. 相似文献
19.
20.
Measurements of the third-order nonlinear optical responses of solutions of the metal-metal multiply bonded complexes Mo(2)(OPr(i))(6), W(2)(OBu(t))(6), M(2)(NMe(2))(6), M(2)(O(2)CBu(t))(4), and M(2)Cl(4)(PMe(3))(4) (M = Mo, W), using picosecond degenerate four-wave mixing at 1064 nm, are reported. These complexes display only very small instantaneous electronic polarizations when excited with cross-polarized beams. When the excitation beams are similarly polarized, a significant third-order optical response is detected, which is attributable to the formation of bulk thermal excitation gratings. Time-dependent measurements support this view. 相似文献