首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a strong antiferromagnetic(AFM) interlayer coupling in ferromagnetic La_(0.67)Sr_(0.33)MnO_3/SrRuO_3(LSMO/SRO) superlattices grown on(111)-oriented SrTiO_3 substrate. Unlike the(001) superlattices for which the spin alignment between LSMO and SRO is antiparallel in the in-plane direction and parallel in the out-of-plane direction, the antiparallel alignment is observed along both the in-plane and out-of-plane directions in the present sample. The low temperature hysteresis loop demonstrates two-step magnetic processes, indicating the coexistence of magnetically soft and hard components. Moreover, an inverted hysteresis loop was observed. Exchange bias tuned by the temperature and cooling field was also investigated, and positive as well as negative exchange bias was observed at the same temperature with the variation of the cooling field. A very large exchange field(H_(EB)) was observed and both magnitude and sign of the H_(EB)depend on the cooling field, which can be attributed to an interplay of Zeeman energy and AFM coupling energy at the interfaces. The present work shows the great potential of tuning a spin texture through interfacial engineering for the complex oxides whose spin state is jointly determined by strongly competing mechanisms.  相似文献   

2.
Exchange bias measurements of ferromagnetic/antiferromagnetic (F/AF) bilayers are typically performed with the magnetization of the F layer parallel to the AF interface. We describe measurements of Co/Pt multilayers with out-of-plane magnetic easy axis that are exchange biased with CoO. Field-cooling experiments with the applied field perpendicular and parallel to the sample plane exhibit loop shifts and enhanced coercivities. Modeling and comparison to biasing of samples with planar easy axis suggests such measurements provide a way to probe the spin projections at F/AF interfaces.  相似文献   

3.
The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni80Fe20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni80Fe20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni80Fe20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.  相似文献   

4.
Magnetic properties of zero field cooled (ZFC) and field cooled (FC) sample of (Mn,Fe)2O3−t nanograins have been investigated by magnetometry (up to 70 kOe) and Mössbauer spectroscopy (up to 60 kOe) in the temperature interval 4.2–300 K. Large horizontal (up to 0.8 kOe) and vertical (up to 80%) shifts of the magnetization hysteresis loops are observed in the FC regime. The obtained results are discussed in terms of exchange interaction between an antiferromagnetic core and a spin-glass-like state of the nanograins boundaries. It is shown that hysteresis loop shifts (horizontal and vertical) depend on the field cooling magnitude, an effect that can be understood by the change of the boundary magnetic structure induced by the external magnetic field. The vertical magnetization shift is described by a phenomenological model, which takes into account the magnetic interaction between the spin-glass like boundary spins and the applied field.  相似文献   

5.
The magnetization reversal of the bilayer polycrystalline FeNi(50 Å)/FeMn(50 Å) film sputtered in a magnetic field has been studied by magnetic and magneto-optical techniques. The external magnetic fields were applied along the easy or hard magnetization axis of the ferromagnetic permalloy layer. The asymmetry of hysteresis loop has been found. Appreciable asymmetry and the exchange bias were observed only in the field applied along the easy axis. The specific features of magnetization reversal were explained within the phenomenological model that involves high-order exchange anisotropy and misalignment of the easy axes of the antiferromagnetic and ferromagnetic layers. It has been shown that the film can exist in one of three equilibrium magnetic states in the field applied along the easy axis. The transitions between these states occur as first-order phase transitions. The observed hysteresis loop asymmetry is related to the existence of the metastable state.  相似文献   

6.
We performed a detailed study of the training effect in exchange biased CoO/Co bilayers. High-resolution measurements of the anisotropic magnetoresistance (AMR) display an asymmetry in the first magnetization reversal process and training in the subsequent reversal processes. Surprisingly, the AMR measurements as well as magnetization measurements reveal that it is possible to partially reinduce the untrained state by performing a hysteresis measurement with an in-plane external field perpendicular to the cooling field. Indeed, the next hysteresis loop obtained in a field parallel to the cooling field resembles the initial asymmetric hysteresis loop, but with a reduced amount of spin rotation occurring at the first coercive field. This implies that the antiferromagnetic domains, which are created during the first reversal after cooling, can be partially erased.  相似文献   

7.
The equilibrium magnetization configuration, the inducing field and the coercive field in trilayer magnetic materials having an out-of-plane anisotropy defect interlayer between two in-plane anisotropy layers are discussed by both analytical and numerical calculations based on a micromagnet approach. It is shown that the above physical parameters strongly depend on the defect layer such as its thickness and exchange stiffness etc., as well as on the applied fields. It is found that there is a special thickness of defect layer, in which the inducing effect begin to occur, and the critical behavior of inducing field in the vicinity of the special thickness is linearly characterized. Particularly, the magnetic hysteresis shows typical soft hysteresis shape, even though the host material is composed of hard magnets, and the coercivity increases with increasing the thickness of the interlayer.  相似文献   

8.
A Monte Carlo simulated-annealing algorithm was used to study the magnetic state in an in-plane helimagnet layer on triangular lattice that exchange couples to an underlayer with strong out-of-plane anisotropy. In the single helimagnet layer with in-plane anisotropy (K), the formation of labyrinthlike domains with local spin spirals, instead of parallel stripes, is favored, and these domains rapidly transform into dense skyrmion crystals with increasing interfacial exchange coupling (J′), equivalent to a virtual magnetic field, and finally evolve to an out-of-plane uniform state at large enough J′. Moreover, with increasing K, the skyrmion crystal state can vary from regular 6-nearest-neighboring circular skyrmion arrangement to irregular squeezed skyrmions with less than 6 nearest neighbors when the in-plane anisotropy energy is higher than the interfacial exchange energy as the skyrmion number is maximized. Finally, we demonstrated that the antiferromagnetic underlayer cannot induce skyrmions while the chirality inversion can be achieved on top of an out-of-plane magnetization underlayer with 180◦ domain walls, supporting the experimental findings in FeGe thin film. This compelling advantage offers a fertile playground for exploring emergent phenomena that arise from interfacing magnetic skyrmions with additional functionalities.  相似文献   

9.
(100) Cu/Ni/Cu sandwich structures have been deposited on (100) Si using the (100) Cu epitaxially grown as the seed layer. The in-plane epitaxial relation between the metal films and Si allows the study of angular dependence of the magnetization for the field parallel to the film plane. Keeping the Cu layers at 1000 Å each and varying the Ni layers between 50 and 1000 Å, the magnetization along the [110] edge is larger than that along the [100] one. This is observed for both structures with a Ni thickness of 1000 and 500 Å, respectively. For the thinner Ni layers, the angular dependence is interfered by the reversal in magnetic anisotropy reported earlier. For such structures, a squared hysteresis loop is observed for the field perpendicular to the film plane, whereas one with little loop is observed for the in-plane magnetization. The angular dependence observed for the 1000 and 500 Å Ni films is the same as that of single crystal Ni. The (100) Cu/Ni/Cu films thus grown can be used for other magnetic measurements in the exploration of two-dimensional magnetism with controlled orientations.  相似文献   

10.
用磁控溅射法制备了GdFeCo/AlN/TbFeCo静磁耦合多层薄膜。振动样品磁强计和克尔磁滞回线测试装置的测试结果表明 :2 5℃不加外磁场时GdFeCo/AlN/TbFeCo静磁耦合多层薄膜读出层 (GdFeCo)的极向克尔角为零 ,读出层呈平面磁化 ;12 5℃不加外场时读出层的克尔角最大 (0 .5 4°) ,读出层的磁化方向为垂直磁化 ;随着温度增高 ,读出层由平面磁化转变为垂直磁化 ,在 75℃到 12 5℃温度范围内读出层磁化方向很快从平面磁化转变为垂直磁化。对磁化过程的机理研究表明 :饱和磁化强度和有效各向异性常量影响读出层磁化方向的转变过程 ,但主要受读出层饱和磁化强度的影响 ;在较高温度时读出层的磁化强度较小 ,退磁场能较小 ,在静磁耦合作用下 ,使GdFeCo读出层的磁化方向发生转变。制备的GdFeCo/AlN/TbFeCo静磁耦合多层薄膜适合作CAD MSR记录介质  相似文献   

11.
We observe the negative shift of the magnetic hysteresis loop at 5 K, while the sample is cooled in external magnetic field in case of 30% of Fe substitution in LaMnO3. The negative shift and training effect of the hysteresis loops indicate the phenomenon of exchange bias. The cooling field dependence of the negative shift increases with the cooling field below 7.0 kOe and then, decreases with further increase of cooling field. The temperature dependence of the negative shift of the hysteresis loops exhibits that the negative shift decreases sharply with increasing temperature and vanishes above 20 K. Temperature dependence of dc magnetization and ac susceptibility measurements show a sharp peak (Tp) at 51 K and a shoulder (Tf) around 20 K. The relaxation of magnetization shows the ferromagnetic and glassy magnetic components in the relaxation process, which is in consistent with the cluster-glass compound.  相似文献   

12.
We have studied the magnetization of Ni dot with 50 to 70 nanometer diameter and 12 nanometer thickness using a magnetic force microscopy with an in-plane magnetic field. The Ni dots were prepared using self-assembled dot patterns with poly (styrene-b-methyl mathacrylate) diblock copolymers on Ni film and ion etching. It was found that the remanent magnetization direction of the dot was perpendicular to the plane as prepared. From the vibrating sample magnetometer measurement, a hysteresis loop was found in the perpendicular magnetization. When an in-plane external magnetic field was applied, the magnetization was rotated into a horizontal direction with low coercivity along the field direction.  相似文献   

13.
The magnetization process of Fe and Nd layers at 5K in Fe/Nd multilayered films with strong perpendicular magnetic anisotropy is elucidated from a comparison of57Fe Mössbauer spectra in the presence of the external field applied parallel to the film plane with total magnetization. At zero external field, the film has a magnetic multi-domain structure. The Nd layer moment is perpendicular to the film plane and the Fe layer moment points in the out-of-plane direction. The Fe layer moment monotonically rotates to the in-plane direction with increasing external field parallel to the film plane, while the Nd layer moment is oriented to the film normal direction up to the external field of 10kOe, above which the Nd layer moment gradually turns to the direction of the external field.  相似文献   

14.
We have measured the zero field and field cooled magnetization of the lightly oxygen doped Cu-rich La2CuO 4 + δ in a wide temperature range (5 K to 350 K). The data together with the evolution of the magnetic hysteresis loop suggest that the ferromagnetism with Curie temperature of 280 K coexists with superconductivity below the transition temperature ∼ 34 K. The coexistence occurs in the hole-rich clusters of size ? 150 nm, which are electronic phase separated from the hole-poor antiferromagnetic background. Received 17 October 2001  相似文献   

15.
Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M--> of polycrystalline Fe films exchange coupled to twinned (110) MnF (2) or FeF (2) antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e. , the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop.  相似文献   

16.
使用飞秒时间分辨抽运-探测磁光克尔光谱技术,研究了激光加热GdFeCo磁光薄膜跨越铁磁补偿温度时稀土-过渡金属(RE-TM)反铁磁交换耦合行为和超快磁化翻转动力学. 实验观察到由于跨越铁磁补偿温度、净磁矩携带者交换而引起的磁化翻转反常克尔磁滞回线以及在同向外磁场下,反常回线上大于和小于矫顽力部分的饱和磁化强度不同,显示出GdFeCo中RE与TM之间的非完全刚性反铁磁耦合. 在含有Al导热底层的GdFeCo薄膜上观测到饱和磁场下激光感应磁化态翻转及再恢复的完整超快动力学过程. 与剩磁态的激光感应超快退磁化过 关键词: 补偿温度 磁化翻转 反铁磁耦合 GdFeCo  相似文献   

17.
郑伟  杜安 《物理学报》2019,68(3):37501-037501
建立了铁电/铁磁双层膜模型,铁电层的电矩用连续标量描述,而铁磁层的自旋应用经典矢量描述.利用蒙特卡罗方法模拟了体系的热力学性质和极化、磁化行为.给出了零场下体系的内能、比热、极化和磁化随温度变化的关系,并分别研究了体系在外磁场和外电场下的极化和磁化行为.模拟结果表明,双层膜体系的内能、比热、极化和磁化性质因层间耦合系数的不同而明显不同,当界面耦合较弱时,双层膜表现出各自的热力学性质,当层间耦合增强到一定程度时,双层膜耦合为一个整体,表现出统一的热力学性质.该双层膜在外场中形成电滞回线和磁滞回线,并表现出偏置特性,界面耦合强度和温度影响滞后回线和偏置现象.  相似文献   

18.
Superlattices of (LaMnO3){2n}/(SrMnO3){n} (1or=3. Measurements of transport, magnetization, and polarized neutron reflectivity reveal that the ferromagnetism is relatively uniform in the metallic state, and is strongly modulated in the insulating state, being high in LaMnO3 and suppressed in SrMnO3. The modulation is consistent with a Mott transition driven by the proximity between the (LaMnO3)/(SrMnO3) interfaces. The insulating state for n>or=3 obeys variable range hopping at low temperatures. We suggest that this is due to states at the Fermi level that emerge at the (LaMnO3)/(SrMnO3) interfaces and are localized by disorder.  相似文献   

19.
何珂 《中国物理》2006,15(2):449-453
The influence of the magnetic field sweep rate on the hysteresis loops of exchange bias Ni0.8Fe0.2/Fe0.5Mn0.5 bilayers has been investigated with a vibrating sample magnetometer. It was found that the sweep rate of 13.6 kA/4πms is high enough to bring about obvious changes in the hysteresis loops of the exchange bias bilayer. High sweep rate in the magnetization reversal stage enlarges the coercivity of the sample, while high sweep rate in the saturation state reduces the coercivity. The above phenomena were attributed to magnetic viscosity in the ferromagnetic layer enhanced by the interface exchange interaction and domain magnetization reversals assisted by thermal fluctuation in the antiferromagnetic layer respectively.  相似文献   

20.
The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc of the constituant layers. The spirit of this topical issue is, for the first time, to gather and survey recent and original developments, both experimental and theoretical, which bring new insights into the physics of exchange bias. It has been planned in relation with an international workshop exclusively devoted to exchange bias, namely IWEBMN’04 (International Workshop on Exchange Bias in Magnetic Nanostructures) that took place in Anglet, in the south west of France, from 16th to 18th September 2004. The conference gathered worldwide researchers in the area, both experimentalists and theoreticians. Several research paths are particularly active in the field of magnetic exchange coupling. The conference, as well as this topical issue, which was also open to contributions from scientists not participating in the conference, has been organized according to the following principles: 1. Epitaxial systems: Since the essential behavior of exchange bias critically depends on the atomic-level chemical and spin structure at the interface between the ferromagnetic and antiferromagnetic components, epitaxial AF/F systems in which the quality of the interface and the crystalline coherence are optimized and well known are ideal candidates for a better understanding of the underlying physics of exchange bias. The dependence of exchange bias on the spin configurations at the interfaces can be accomplished by selecting different crystallographic orientations. The role of interface roughness can also be understood from thin-film systems by changing the growth parameters, and correlations between the interface structure and exchange bias can be made, as reported in this issue. 2. Out-of-plane magnetized systems: While much important work has been devoted to the study of structures with in-plane magnetization, little has been done on the study of exchange bias and exchange coupling in samples with out-of-plane magnetization. Some systems can exhibit either in-plane or out-of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and irreversible processes are also relevant. Thermal processes like the training effect manifesting itself in changes in the hysteretic characteristics depending on magnetic history can lead to changes in the magnetic configurations. This section contains an increasing number of investigations of dynamics in exchange bias coupled bilayers, and in particular those of the intriguing asymmetric magnetization reversal in both branches of a hysteresis loop. The Editors of the topical issue: Alexandra Mougin Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, F-91405 Orsay, France Stéphane Mangin Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré, F-54506 Nancy, France Jean-Francois Bobo Laboratoire de Physique de la Matière Condensée - NMH, FRE 2686 CNRS ONERA, 2 avenue Edouard Belin, F-31400 Toulouse, France Alois Loidl Experimentalphysik V, EKM, Institut für Physik, Universität Augsburg, Universitätsstrasse 1, D-86135, Augsburg, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号