首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the feasibility of multistage fragmentation in combination with a fast background subtraction method, yielding the equivalent of MS3. The first quadrupole selects an ion of interest, and the ion is axially accelerated into Q2 to generate fragment ions. Subsequent stages of mass selection and fragmentation are obtained by quadrupolar resonant excitation within the Q2 collision cell. The fragments are analyzed downstream by either a resolving quadrupole or a time-of-flight (TOF) mass spectrometer, and multistage spectra are obtained by subtraction (MS(n) - MS(n-1)) for n = 3 or 4. We discuss the characterization of this method, including product ion arrival times, fragmentation efficiencies, and ion selectivity. We report accurate TOF mass spectra of background-subtracted MS3 for protonated molecules reserpine (m/z 609), bosentan (m/z 1552), and taxol (m/z 854).  相似文献   

2.
An integrated differential approach to the characterization of complex mixtures is presented which includes the targeting of liquid chromatography (LC) peaks for identification using characteristic UV adsorption of the LC peak, subsequent molecular weight and formula determination using accurate mass LC mass spectrometry (MS), and structure characterization using accurate mass LC-tandem mass spectrometry. The use of differential UV adsorption aids in narrowing the scope of the study to only specific peaks of interest. Accurate mass measurement of the molecular ion species provides molecular weight information as well as atomic composition information. The tandem MS (MS/MS) spectra provide fragmentation information which allows for structural characterization of each component. Accurate mass assignment of each of the fragment ions in the MS/MS spectrum provides atomic composition for each of the fragment ions and thus further aids in the structural characterization. These experiments are facilitated through the use of on-line LC-MS and LC-MS/MS with in-line UV detection. A synthetic toxic oil (STO) related to Toxic Oil Syndrome is studied with a focus on possible contaminants resulting from the interaction of aniline, used as a denaturant, with the normal components of the oil. A differential analysis between the STO and a control oil is performed. LC peaks were targeted using UV absorbance to indicate the possible presence of the aniline moiety. Further differential analysis was performed through the determination of the MS signals associated with each component separated on the LC. Finally, the MS/MS data was also used to determine if the fragmentation of the targeted components indicated the presence of aniline. The MS/MS and accurate mass data were used to assign the structures for the targeted components.  相似文献   

3.
Methylation is one of the important posttranslational modifications of biological systems. At the metabolite level, the methylation process is expected to convert bioactive compounds such as amino acids, fatty acids, lipids, sugars, and other organic acids into their methylated forms. A few of the methylated amino acids are identified and have been proved as potential biomarkers for several metabolic disorders by using mass spectrometry–based metabolomics workstation. As it is possible to encounter all the N‐methyl forms of the proteinogenic amino acids in plant/biological systems, it is essential to have analytical data of all N‐methyl amino acids for their detection and identification. In earlier studies, we have reported the ESI‐MS/MS data of all methylated proteinogenic amino acids, except that of mono‐N‐methyl amino acids. In this study, the N‐methyl amino acids of all the amino acids ( 1 ‐ 21 ; including one isomeric pair) were synthesized and characterized by ESI‐MS/MS, LC/MS/MS, and HRMS. These data could be useful for detection and identification of N‐methyl amino acids in biological systems for future metabolomics studies. The MS/MS spectra of [M + H]+ ions of most N‐methyl amino acids showed respective immonium ions by the loss of (H2O, CO). The other most common product ions detected were [MH‐(NH2CH3]+, [MH‐(RH)]+ (where R = side chain group) ions, and the selective structure indicative product ions due to side chain and N‐methyl group. The isomeric/isobaric N‐methyl amino acids could easily be differentiated by their distinct MS/MS spectra. Further, the MS/MS of immonium ions inferred side chain structure and methyl group on α‐nitrogen of the N‐methyl amino acids.  相似文献   

4.
Electrospray ion-trap tandem mass spectrometry (ESI-MS/MS) and high-performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOFMS) were used to identify and characterize eight C-21 steroidal glycosides in Hoodia gordonii. A generalized fragmentation pathway was proposed by comparing the spectra acquired for eight C-21 steroidal glycosides. The steroidal glycosides in Hoodia gordonii have been classified into two major core groups: hoodigenin A and calogenin. Using the ESI-TOF method, the major core peak ions generated by hoodigenin A glycosides are m/z 313 and 295 and by calogenin glycosides are m/z 479, 461, 299 and 281, respectively. In the MS/MS spectra, fragmentation reactions of the [M+Na](+) ion were recorded to provide structural information about the glycosyl and aglycone moieties. The data illustrates the ability of positive mode ESI for the identification of hoodigenin A and calogenin glycosides, including the nature of the hoodigenin A and calogenin core, the number of sugar residues and the type of saccharide moiety.  相似文献   

5.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

6.
A selective reversed-phase liquid chromatography/mass spectrometry (LC/MS(n)) method was developed for the characterization of components of the semi-synthetic macrolide clarithromycin. Mass spectral data were acquired online on a LCQ ion trap mass spectrometer equipped with an electrospray ionization source operated in the positive ion mode. One unknown compound was structurally elucidated and two other unknowns were characterized using the MS/MS and MS(n) collision-induced dissociation spectra of reference substances as interpretative templates, combined with knowledge of the nature of functional group fragmentation behaviour. Given the importance attached to the identification of impurities of unknown identity in pharmaceutical substances, this study is useful for companies producing clarithromycin.  相似文献   

7.
The antimicrobial moenomycin, commonly used as a growth promoter in livestock, was isolated from medicated chicken feed. The purified extract was subjected to reversed-phase liquid chromatographic separation followed by structural characterization using ion-trap mass spectrometry (ITMS), which allowed identification of five moenomycins (A, A12, C1, C3, and C4) as the major components. The fragmentation patterns of the protonated and deprotonated moenomycin molecules, as well as of a series of sodium adducts, were investigated using ITMS after electrospray ionization. While the protonated molecules [M+H]+ proved highly unstable and underwent extensive in-source fragmentation, isolation and activation of the [M--H]- ions (m/z 1580 for moenomycin-A) yielded simple mass spectra with a dominant base peak corresponding to the loss of the carboxy-glycol and the C25-hydrocarbon chain (m/z 1152 for moenomycin-A). Further study of this fragment ion in an MS3 experiment gave rise to a peculiar product ion (m/z 902 for moenomycin-A) that was attributed to the expulsion of a carbohydrate moiety representing a central building block of the linear molecule. In positive ion mode the generation of the mono-sodiated adduct ions, [M+Na]+, was promoted by amending the mobile phase with 100 microM sodium acetate, but this also resulted in higher adducts of the type [M+2Na--H]+ and [M+3Na--2H]+ arising from the formation of the sodium salts of the phosphate acid diester and subsequently of the carboxylic acid. Substantial differences among the fragment-rich product ion profiles of the three species were observed, and could in part be traced back to the mode of complexation of the additional sodium cation(s).  相似文献   

8.
A rapid, specific and reliable isocratic high-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS/MS) method has been developed and validated for the identification and characterization of stressed degradation products of metoprolol. Metoprolol, an anti-hypertensive drug, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per ICH-specified conditions. The drug showed extensive degradation under oxidative and hydrolysis (acid and base) stress conditions. However, it was stable to thermal, neutral and photolysis stress conditions. A total of 14 degradation products were observed and the chromatographic separation of the drug and its degradation products was achieved on a C(18) column (4.6 × 250 mm, 5 μm). To characterize degradation products, initially the mass spectral fragmentation pathway of the drug was established with the help of MS/MS, MS(n) and accurate mass measurements. Similarly, fragmentation pattern and accurate masses of the degradation products were established by subjecting them to LC-MS/QTOF analysis. Structure elucidation of degradation products was achieved by comparing their fragmentation pattern with that of the drug. The degradation products DP(2) (m/z 153) and DP(14) (m/z 236) were matched with impurity B, listed in European Pharmacopoeia and British Pharmacopoeia, and impurity I, respectively. The LC-MS method was validated with respect to specificity, linearity, accuracy and precision.  相似文献   

9.
新型抗炎镇痛剂SFZ-47及其代谢物的电喷雾离子阱质谱研究   总被引:7,自引:0,他引:7  
用电喷雾离子阱质谱对警犬尿样中SFZ-47[3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮)及其4种代谢物进行了结构鉴定,利用质谱解析软件分析其裂解方式发现,它们在(+)ESI-MS^2或( )ESI-MS^3质谱中分别生成m/z122和脱吡咯里嗪酮母核的碎片,并发现葡萄苷酸型代谢物易于生成脱水(18u)和脱葡萄醛酸(176u)的碎片离子,这些特征可用于SFZ-47及结构类似物的体内生物转化研究。  相似文献   

10.
Positive-ion mass spectral fragmentations of seven mycosporine-like amino acids (MAAs) are reported and discussed. The MAAs studied are small compounds composed of a cycloheximine ring substituted with amino acid or amino alcohol units. Techniques used include electron impact (EI) and electrospray ionization (ESI) with tandem mass spectrometry (MS/MS). ESI-MS/MS showed unusual small radical losses, generally resulting from the loss of a methyl group with the exception of shinorine and porphyra for which the initial losses were 30 and 44 Da, respectively. As expected from structural similarities, porphyra, shinorine and palythinol displayed similar fragmentation patterns, while palythenic acid and palythene fragmented in a similar manner. Overall, the ESI-MS/MS fragmentations at m/z <200 exhibited a distinctive pattern for all seven MAAs with characteristic ions at m/z 137, 168, 186, and 197 or 199. Several ions were observed for each of the MAAs analyzed, and together provide a useful and potentially diagnostic pattern for identification of MAAs and as an aid in structure elucidation of novel MAAs. For GC/EI-MS analysis, trimethylsilyl (TMS) derivatives were made. The EI-MS fragmentation patterns of TMS-MAAs showed many features typical of TMS-derivatized alpha-amines. The precursor TMS-MAA ion was not detected, but a [M-90](+ radical) ion was the highest-mass intense peak observed for palythine, palythinol and shinorine, while palythene gave a [M-116](+ radical) ion. Besides determining the number of acidic hydrogens, EI-MS of TMS-derivatized MAAs will aid in structure elucidation of novel MAAs.  相似文献   

11.
Structural characterization of unstable metabolites and other drug-derived entities poses a serious challenge to the analytical chemist using instrumentation such as LC-MS and LC-MS/MS, and may lead to inaccurate identification of metabolite structures. The task of structural elucidation becomes even more difficult when an analyte is unstable in the ion source of the mass spectrometer. However, a judicious selection of the experimental conditions and the advanced features of new generation mass spectrometers can often overcome these difficulties. We describe here the identification of three drug-derived peaks (A, B and C) that were detected from a Schering-Plough developmental compound (Lonafarnib) following incubation with cDNA-expressed human CYP3A4. Definitive characterization was achieved using (1) accurate mass measurement, (2) stable isotope incorporation, (3) reduced ion source temperature, (4) alkali ion attachment and (5) MS/MS fragmentation studies. The protonated ions of compounds A and B fragmented almost completely in the source, yielding ions of the same mass-to-charge ratio (m/z) as that of protonated C (CH+). Fortunately, the presence of Na+ and K+ adducts of A and B provided information crucial to distinguishing AH+ and BH+ from their fragment ions. Metabolite A was shown to be an unstable hydroxylated metabolite of Lonafarnib. The metabolite C was shown to be a dehydrogenated metabolite of Lonafarnib (Lonafarnib-2H), unstable in the presence of protic solvents. Finally, B was artifactually formed most likely from C by the solvolytic addition of methanol during sample preparation. MS/MS fragmentation experiments assisted in identifying the site of metabolism in A and chemical modification in B. A and C readily interconvert through hydration/dehydration, and B and C through addition/elimination of methanol present in the sample-processing solvents. Finally, NMR experiments were performed to confirm the structures of A and C.  相似文献   

12.
A mass spectrometric study was carried out on two nonylphenoxycarboxylic acids, NP1EC and NP2EC (where 1 and 2 indicate the number of ethoxylate units attached to the nonylphenoxy moiety), that are persistent metabolites of widely used nonionic surfactant nonylphenol ethoxylates. In a gas chromatographic/mass spectrometric (GC/MS) study of the methyl esters of NP1EC and NP2EC, two series of fragment ions were observed in electron ionization (EI) mass spectra; m/z (179 + 14n, n = 0-7) and m/z (105 + 14n, n = 0-4) for NP1ECMe and m/z (223 + 14n, n = 0-7) and m/z (107 + 14n, n = 0-5) for NP2ECMe. Similarity indices were used to compare quantitatively the mass spectra of isomers. The mass spectra of two isomers were found to be similar whereas those of the remaining isomers were readily distinguishable from each other. The abundant fragment ions of the two NPECMes were investigated further by GC/MS/MS; product ions resulting from cleavage in the alkyl moiety, cleavage in the ECMe moiety and cleavage in both moieties were detected. Possible structures of the nonyl groups in the two esters were inferred. GC/chemical ionization (CI) mass spectra of the NPECMes with isobutane as reagent gas showed characteristic hydride ion-abstracted fragment ions shifted by 1 Da from those in the corresponding EI mass spectra. The sensitivity of a selected ion monitoring quantitation method for the NPECMes is enhanced under CI conditions compared with that under EI conditions. With electrospray ionization MS/MS, [M - H](-) ions of NP1EC (m/z 277) and NP2EC (m/z 321) were observed and, upon collision-induced dissociation of [M - H](-) of each of the two acids, fragment ions of m/z 219 corresponding to deprotonated nonylphenol, were observed in each case. Based on this observation, a rapid, simple and reliable selected product ion quantitation method is proposed for NP1EC and NP2EC.  相似文献   

13.
高效液相色谱-质谱法分析菊芋叶中的绿原酸类化合物   总被引:4,自引:0,他引:4  
建立了菊芋叶中绿原酸类化合物的高效液相色谱-紫外检测-质谱(HPLC-UV-MS)定性分析方法。液相色谱条件:Inertsil ODS-3色谱柱(250 mm×4.6 mm,5 μm);甲醇和水(含1%乙酸)梯度洗脱,流量1.0 mL/min;柱温35 ℃;检测波长327 nm。质谱条件:Thermo公司TSQ三级四极杆质谱仪;电喷雾电离(ESI)接口;负离子检出模式。采用该方法得到了菊芋叶提取物的紫外检测的色谱图、负离子监测的总离子流图以及相应色谱峰的紫外光谱图和一级、二级质谱图,对其进行解析,鉴别出菊芋叶中的7个绿原酸类成分。该方法简便、快速、灵敏度高,可以很好地对菊芋叶中的绿原酸类化合物进行定性分析。  相似文献   

14.
We applied low-energy collisionally activated dissociation (CAD) tandem quadrupole mass spectrometry to study the fragmentation pathways of the [M + H](+) and [M + Li](+) ions of phosphatidylcholine (PC), generated by electrospray ionization (ESI). It is revealed that the fragmentation pathways leading to loss of the polar head group and of the fatty acid substituents do not involve the hydrogens attached to the glycerol backbone as previously reported. The pathway for formation of the major ion of m/z 184 by loss of the polar head group from the [M + H](+) precursor of a diacyl PC involves the participation of the alpha-hydrogen of the fatty acyl substituents, whereas the H(+) participates in the loss of fatty acid moieties. The alpha-hydrogens of the fatty acid substituents also participate in the major fragmentation processes, including formation of [M + Li-R(x)CO(2)H](+) and [M + Li-59-R(x)CO(2)H](+) ions for the [M + Li](+) ions of diacyl PCs, when subjected to low-energy CAD. These fragmentation processes are deterred by substitution of the fatty acyl moieties with alkyl, alkenyl, or hydroxyl groups and consequentially, result in a distinct product-ion spectrum for various PC, including diacyl-, plasmanyl- plasmenyl-, and lyso-PC isomers. The alpha-hydrogens of the fatty acyl substituents at sn-2 are more labile than those at sn-1. This is reflected by the preferential loss of the R(1)CO(2)H over the R(2)CO(2)H observed for the [M + Li](+) ions of diacyl PCs. The spectrum features resulting from the preferential losses permit identification and assignment of the fatty acid moieties in the glycerol backbone. The new fragmentation pathways established by tandem and source CAD tandem mass spectra of various PC molecules, including deuterium-labeling analogs, were proposed. These pathways would clarify the mechanisms underlying the ion formations that lead to the structural characterization of PC molecules.  相似文献   

15.
Coupled liquid chromatography and ion trap mass spectrometry (LC/MS) was used for the characterization of the semi-synthetic 16-membered ring macrolide josamycin propionate. On-line identification of impurities in this antibiotic complex was performed with an ion trap mass spectrometer without recourse to time-consuming isolation and purification procedures. Ion trap mass spectrometry is ideally suited to identification of impurities because it provides MSn capability, enabling multiple stages of mass spectrometry to obtain the maximum amount of structural information for a given molecule. The ion trap was used with an electrospray ionization source operated in the positive ion mode or with an atmospheric pressure chemical ionization source operated in the negative ion mode. The identity of the unknown compounds was deduced using the MS/MS and MSn collision-induced dissociation spectra of reference substances or structural analogs as interpretative templates, combined with knowledge about the nature of functional group fragmentation behavior. Given the importance attached to the identification of impurities of unknown identity in pharmaceutical substances, this study is useful for companies producing josamycin propionate. The knowledge of the fragmentation behavior is also of importance in further research on other 16-membered macrolides.  相似文献   

16.
A method based on the coupling of capillary electrophoresis with mass spectrometry (CE/MS) was developed for the monitoring of 3-quinuclidinol and its four N-alkyl derivatives (methyl, ethyl, propyl and isopropyl derivatives). A fragmentation study (collision-induced dissociation of ions in an ion trap) and optimization of the ion optics set-up for CE/MS experiments using direct infusion of a methanolic solution of the standards into the mass spectrometer were carried out in advance. Molecular ions of all quaternary compounds and the quasi-molecular ion [M + H]+ of free 3-quinuclidinol prevail in the mass spectra. In the MS/MS of propyl and isopropyl derivatives, the elimination of the alkyl chain dominates, leading to the ion at m/z 128. The fragmentation of the other compounds is more complex. Previous CE separation of the mixture of isobaric propyl and isopropyl derivatives is necessary for their unambiguous identification. A 10 mM ammonium acetate buffer (pH 4.0) is the optimum running electrolyte, allowing the CE separation of methyl, ethyl, propyl and isopropyl derivatives. A 0.5% (v/v) solution of acetic acid in methanol provides sufficient detection sensitivity when used as the sheath liquid. Limits of detection of 0.1 ppm for 3-quinuclidinol and 0.05 ppm for quaternary derivatives were achieved under the optimum conditions. The optimized method was applied to the determination of 3-quinuclidinol and related quaternary derivatives spiked into a sample of pond water. The experimental set-up for CE/MS/MS was investigated, which strongly increases the identification capability of the technique.  相似文献   

17.
Electrospray spectra of various bile acids and other surfactants were obtained using an ion trap instrument. Bile acids and bile acid derivatives such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) self associate to form micelles in a stepwise process. Their spectra show a distinct pattern of aggregation, with ions evenly separated in the m/z space. A new parameter, n/z, can be used to characterize such ions, where n is the number of molecules and z is the charge of the aggregate. The values of z were determined using multi-stage mass spectrometry (MS(n)) and high resolution in the ion trap.  相似文献   

18.
Fragmentation mechanisms of protonated chalcone and its derivatives with different functional groups were investigated by atmospheric pressure chemical ionization with tandem mass spectrometry (MS/MS). The major fragmentation pathways were loss of the phenyl group from the A or B ring, combined with loss of CO. Losses of H(2)O and CO from the precursor ions of [M+H](+) are proposed to occur via rearrangements. Elimination of water from protonated chalcones was observed in all the title compounds to yield a stable ion but it was difficult to obtain skeletal fragmentation of a precursor ion. Loss of CO was found in the MS/MS spectra of all the compounds except the nitro-substituted chalcones. When the [M+H--CO](+) ion was fragmented in the MS/MS experiments, there were distinctive losses of 15 and 28 Da, as the methyl radical and ethylene, respectively. The ion at m/z 130, found only in the nitro-substituted chalcones, was assigned as C(9)H(6)O by Fourier transform ion cyclotron resonance (FTICR)-MS/MS; m/z 130 is a common fragment ion in the electron ionization (EI) spectra of chalcones. In order to more easily distinguish the constitutional isomers of these chalcones, breakdown curves were produced and these provided strong support in this study.  相似文献   

19.
Pregnane glycosides are a class of naturally occurring substances characterized by some interesting biological activities and widely distributed in the plant kingdom and in some marine organisms. Their toxicity and use in herbal drugs and folk medicines has generated great interest in the chemical characterization of these molecules. In the study reported here the potential of electrospray ionization mass spectrometry (ESI-MS) in the identification and structural characterization of pregnane glycosides was examined. ESI-MS/MS and ESI-MS(n) analyses were performed on 27 different compounds employing two mass spectrometers equipped with a triple-quadrupole or an ion-trap analyzer. The data illustrate the ability of the ESI techniques in the identification of pregnane glycosides, including the nature of the pregnane core, the kind of ester substituents, the types of sugar residues (hexose, deoxyhexose, dideoxyhexose, O-methyldeoxyhexose and O-methyldideoxyhexose), and the primary structure of the saccharide chain. From these data, a generalized fragmentation pathway was proposed by comparing the spectra acquired for all the compounds. Interestingly, similar results were obtained from the two instruments, thus demonstrating that detailed analyses of product ion spectra obtained using a triple-quadrupole mass spectrometer led to structural information comparable to those obtainable in MSn experiments using an ion trap. Different and complementary information was deduced by fragmenting the [M+H]+ or the [M+Na]+ ions, or the protonated aglycone [Agl+H]+ generated by in-source fragmentation. The present evidence clearly suggests that, in order to obtain a complete characterization of pregnane glycosides by MS, all three of these species should be accurately analyzed.  相似文献   

20.
In this work we report the development of a novel methodology for the determination of stereospecificity of diacyl glycerophospholipids, including glycerophosphatidic acids (PA), glycerophosphoserines (PS), glycerophosphoglycerols (PG), glycerophosphoinositols (PI), and glycerophosphoethanolamines (PE), which can be conventionally ionized in negative ion mode. This methodology uses MS(2) recorded on a hybrid quadrupole time-of-flight mass spectrometer to determine the stereospecificity of diacyl glycerophospholipids based on the lyso-form fragment ions, attributed to the neutral loss of fatty acyl moieties. The fragmentation patterns of a variety of diacyl glycerophospholipid standards were first fully examined over a wide range of collision energy. We observed that lyso-form fragment ions corresponding to the neutral loss of fatty acyl moieties attached to the sn2 position as free fatty acids ([M-Sn2](-) ) and as ketenes ([M-(Sn2-H(2) O)](-) ) exhibited consistently higher intensity than their counterpart ions due to the neutral loss of fatty acyl moieties attached to the sn1 position ([M-Sn1](-) and [M-(Sn1-H(2) O)](-) ). Therefore, we concluded that an empirical fragmentation rule can be used to precisely determine the stereospecificity of diacyl glycerophospholipids, primarily on the basis of relative abundance of the lyso-form fragment ions. We then examined the product ion spectra of diacyl glycerophospholipids recorded from lipid extracts of rat hepatoma cells, where the stereospecific information of these lipids was conclusively determined. Combining the novel methodology reported in this work with the currently widely practiced mass spectrometric techniques such as multiple precursor ion scans (MPIS), fatty acyl scans (FAS), and multidimensional mass spectrometry based shotgun lipidomics (MDMS-SL), should enable a reliable and convenient platform for comprehensive glycerophospholipid profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号